
The Dynare Macro-processor
Dynare Summer School 2014

Sébastien Villemot

CEPREMAP

June 10, 2014

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 1 / 30

Outline

1 Overview

2 Syntax

3 Typical usages

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 2 / 30

Outline

1 Overview

2 Syntax

3 Typical usages

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 3 / 30

Motivation

The Dynare language (used in MOD files) is well suited for many
economic models

However, as such, it lacks some useful features, such as:
I a loop mechanism for automatically repeating similar blocks of

equations (such as in multi-country models)
I an operator for indexed sums or products inside equations
I a mechanism for splitting large MOD files in smaller modular files
I the possibility of conditionally including some equations or some

runtime commands

The Dynare Macro-language was specifically designed to address
these issues

Being flexible and fairly general, it can also be helpful in other
situations

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 4 / 30

Design of the macro-language

The Dynare Macro-language provides a new set of
macro-commands which can be inserted inside MOD files

Language features include:
I file inclusion
I loops (for structure)
I conditional inclusion (if/else structures)
I expression substitution

Implemented in Dynare starting from version 4.0

The macro-processor transforms a MOD file with macro-commands
into a MOD file without macro-commands (doing text
expansions/inclusions) and then feeds it to the Dynare parser

The key point to understand is that the macro-processor only does
text substitution (like the C preprocessor or the PHP language)

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 5 / 30

Design of Dynare

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 6 / 30

Outline

1 Overview

2 Syntax

3 Typical usages

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 7 / 30

Macro Directives

Directives begin with an at-sign followed by a pound sign (@#)

A directive produces no output, but gives instructions to the
macro-processor

Main directives are:
I file inclusion: @#include
I definition a variable of the macro-processor: @#define
I conditional statements (@#if/@#ifdef/@#ifndef/@#else/@#endif)
I loop statements (@#for/@#endfor)

In most cases, directives occupy exactly one line of text. In case of
need, two anti-slashes (\\) at the end of the line indicates that the
directive is continued on the next line.

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 8 / 30

Inclusion directive

This directive simply includes the content of another file at the place
where it is inserted.

Syntax

@#include "filename"

Example

@#include "modelcomponent.mod"

Exactly equivalent to a copy/paste of the content of the included file

Note that it is possible to nest includes (i.e. to include a file from an
included file)

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 9 / 30

Variables

The macro processor maintains its own list of variables (distinct of
model variables and of MATLAB variables)

Macro-variables can be of four types:
I integer
I character string (declared between double quotes)
I array of integers
I array of strings

No boolean type:
I false is represented by integer zero
I true is any non-null integer

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 10 / 30

Macro-expressions (1/2)

It is possible to construct macro-expressions, using standard operators.

Operators on integers

arithmetic operators: + - * /

comparison operators: < > <= >= == !=

logical operators: && || !

integer ranges: 1:4 is equivalent to integer array [1,2,3,4]

Operators on character strings

comparison operators: == !=

concatenation: +

extraction of substrings: if s is a string, then one can write s[3] or
s[4:6]

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 11 / 30

Macro-expressions (2/2)

Operators on arrays

dereferencing: if v is an array, then v[2] is its 2nd element

concatenation: +

difference -: returns the first operand from which the elements of the
second operand have been removed

extraction of sub-arrays: e.g. v[4:6]

testing membership of an array: in operator
(example: "b" in ["a", "b", "c"] returns 1)

Macro-expressions can be used at two places:

inside macro directives, directly

in the body of the MOD file, between an at-sign and curly braces (like
@{expr}): the macro processor will substitute the expression with its
value

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 12 / 30

Define directive

The value of a macro-variable can be defined with the @#define directive.

Syntax

@#define variable name = expression

Examples

@#define x = 5 // Integer

@#define y = "US" // String

@#define v = [1, 2, 4] // Integer array

@#define w = ["US", "EA"] // String array

@#define z = 3 + v[2] // Equals 5

@#define t = ("US" in w) // Equals 1 (true)

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 13 / 30

Expression substitution
Dummy example

Before macro-processing

@#define x = ["B", "C"]

@#define i = 2

model;

A = @{x[i]};

end;

After macro-processing

model;

A = C;

end;

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 14 / 30

Loop directive

Syntax

@#for variable name in array expr
loop body

@#endfor

Example: before macro-processing
model;

@#for country in ["home", "foreign"]

GDP_@{country} = A * K_@{country}^a * L_@{country}^(1-a);

@#endfor

end;

Example: after macro-processing
model;

GDP_home = A * K_home^a * L_home^(1-a);

GDP_foreign = A * K_foreign^a * L_foreign^(1-a);

end;

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 15 / 30

Conditional inclusion directives (1/2)

Syntax 1

@#if integer expr
body included if expr != 0

@#endif

Syntax 2

@#if integer expr
body included if expr != 0

@#else

body included if expr == 0
@#endif

Example: alternative monetary policy rules
@#define linear_mon_pol = 0 // or 1

...

model;

@#if linear_mon_pol

i = w*i(-1) + (1-w)*i_ss + w2*(pie-piestar);

@#else

i = i(-1)^w * i_ss^(1-w) * (pie/piestar)^w2;

@#endif

...

end;

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 16 / 30

Conditional inclusion directives (2/2)

Syntax 1

@#ifdef variable name
body included if variable

defined
@#endif

Syntax 2

@#ifdef variable name
body included if variable

defined
@#else

body included if variable not
defined
@#endif

There is also @#ifndef, which is the opposite of @#ifdef (i.e. it tests
whether a variable is not defined).

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 17 / 30

Echo and error directives

The echo directive will simply display a message on standard output

The error directive will display the message and make Dynare stop
(only makes sense inside a conditional inclusion directive)

Syntax

@#echo string expr
@#error string expr

Examples

@#echo "Information message."

@#error "Error message!"

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 18 / 30

Saving the macro-expanded MOD file

For debugging or learning purposes, it is possible to save the output
of the macro-processor

This output is a valid MOD file, obtained after processing the
macro-commands of the original MOD file

Just add the savemacro option on the Dynare command line (after
the name of your MOD file)

If MOD file is filename.mod, then the macro-expanded version will
be saved in filename-macroexp.mod

You can specify the filename for the macro-expanded version with the
syntax savemacro=mymacroexp.mod

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 19 / 30

Outline

1 Overview

2 Syntax

3 Typical usages

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 20 / 30

Modularization

The @#include directive can be used to split MOD files into several
modular components

Example setup:

modeldesc.mod: contains variable declarations, model equations and
shocks declarations

simulate.mod: includes modeldesc.mod, calibrates parameters and
runs stochastic simulations

estim.mod: includes modeldesc.mod, declares priors on parameters
and runs bayesian estimation

Dynare can be called on simulate.mod and estim.mod

But it makes no sense to run it on modeldesc.mod

Advantage: no need to manually copy/paste the whole model (at the
beginning) or changes to the model (during development)

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 21 / 30

Indexed sums or products
Example: moving average

Before macro-processing

@#define window = 2

var x MA_x;

...

model;

...

MA_x = 1/@{2*window+1}*(

@#for i in -window:window

+x(@{i})

@#endfor

);

...

end;

After macro-processing

var x MA_x;

...

model;

...

MA_x = 1/5*(

+x(-2)

+x(-1)

+x(0)

+x(1)

+x(2)

);

...

end;

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 22 / 30

Multi-country models
MOD file skeleton example

@#define countries = ["US", "EA", "AS", "JP", "RC"]

@#define nth_co = "US"

@#for co in countries

var Y_@{co} K_@{co} L_@{co} i_@{co} E_@{co} ...;

parameters a_@{co} ...;

varexo ...;

@#endfor

model;

@#for co in countries

Y_@{co} = K_@{co}^a_@{co} * L_@{co}^(1-a_@{co});

...

@# if co != nth_co

(1+i_@{co}) = (1+i_@{nth_co}) * E_@{co}(+1) / E_@{co}; // UIP relation

@# else

E_@{co} = 1;

@# endif

@#endfor

end;

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 23 / 30

Endogeneizing parameters (1/4)

When doing the steady-state calibration of the model, it may be
useful to consider a parameter as an endogenous (and vice-versa)

Example:

y =
(
α

1
ξ `

1− 1
ξ + (1 − α)

1
ξ k1− 1

ξ

) ξ
ξ−1

lab rat =
w`

py

In the model, α is a (share) parameter, and lab rat is an endogenous
variable

We observe that:
I calibrating α is not straigthforward!
I on the contrary, we have real world data for lab rat
I it is clear that these two variables are economically linked

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 24 / 30

Endogeneizing parameters (2/4)

Therefore, when computing the steady state:
I we make α an endogenous variable and lab rat a parameter
I we impose an economically relevant value for lab rat
I the solution algorithm deduces the implied value for α

We call this method “variable flipping”

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 25 / 30

Endogeneizing parameters (3/4)
Example implementation

File modeqs.mod:
I contains variable declarations and model equations
I For declaration of alpha and lab rat:

@#if steady

var alpha;

parameter lab_rat;

@#else

parameter alpha;

var lab_rat;

@#endif

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 26 / 30

Endogeneizing parameters (4/4)
Example implementation

File steadystate.mod:
I begins with @#define steady = 1
I then with @#include "modeqs.mod"
I initializes parameters (including lab rat, excluding alpha)
I computes steady state (using guess values for endogenous, including

alpha)
I saves values of parameters and endogenous at steady-state in a file,

using the save params and steady state command

File simulate.mod:
I begins with @#define steady = 0
I then with @#include "modeqs.mod"
I loads values of parameters and endogenous at steady-state from file,

using the load params and steady state command
I computes simulations

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 27 / 30

MATLAB loops vs macro-processor loops (1/3)

Suppose you have a model with a parameter ρ, and you want to make
simulations for three values: ρ = 0.8, 0.9, 1. There are several ways of
doing this:

With a MATLAB loop

rhos = [0.8, 0.9, 1];

for i = 1:length(rhos)

rho = rhos(i);

stoch_simul(order=1);

end

The loop is not unrolled

MATLAB manages the iterations

Interesting when there are a lot of iterations

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 28 / 30

MATLAB loops vs macro-processor loops (2/3)

With a macro-processor loop (case 1)

rhos = [0.8, 0.9, 1];

@#for i in 1:3

rho = rhos(@{i});

stoch_simul(order=1);

@#endfor

Very similar to previous example

Loop is unrolled

Dynare macro-processor manages the loop index but not the data
array (rhos)

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 29 / 30

MATLAB loops vs macro-processor loops (3/3)

With a macro-processor loop (case 2)

@#for rho_val in ["0.8", "0.9", "1"]

rho = @{rho_val};

stoch_simul(order=1);

@#endfor

Advantage: shorter syntax, since list of values directly given in the
loop construct

Note that values are given as character strings (the macro-processor
does not know floating point values)

Inconvenient: can not reuse an array stored in a MATLAB variable

Sébastien Villemot (CEPREMAP) The Dynare Macro-processor June 10, 2014 30 / 30

	Overview
	Syntax
	Typical usages

