### **Endogenous Debt Crises**

### Daniel Cohen<sup>1</sup> Sébastien Villemot<sup>2</sup>

<sup>1</sup>Paris School of Economics and CEPR

<sup>2</sup>CEPREMAP

July 18, 2014

S. Villemot (CEPREMAP)

3 July 18, 2014 1 / 40

→ Ξ →

### Objectives

- Provide a simple theoretical framework accounting for:
  - the fact that some emerging countries prudently manage their external debt
  - while others periodically fall into the trap of debt crises
- Infer a typology of crises:
  - exogenously-driven: unanticipated shock on the fundamentals
  - endogenous crises:
    - \* *self-enforcing* (the country rationally adopts a risky behavior)
    - ★ *self-fulfilling* (the markets trigger a crisis that was avoidable)
- Estimate their relative prevalence in historical data

## Typology of self-fulfilling debt crises

- Liquidity crises (Cole and Kehoe, 1996, 2000)
  - Essentially a coordination problem
  - Analog to bank runs
  - Can be avoided with a simple coordination device (Chamon, 2007)
- Snowball effect (Calvo, 1988)
  - High interest rates  $\Rightarrow$  more debt  $\Rightarrow$  default
  - Low interest rates  $\Rightarrow$  less debt  $\Rightarrow$  no default
  - Can be avoided if negotiation occurs on the amount due tomorrow rather than the amount lent today (Chamon, 2007)
  - More generally, impossible when no social cost of default (generalization of Cohen and Portes, 2004)

 $\Rightarrow$  Self-fulfilling crises characterized as the outcome of an endogenous destruction of fundamentals by the crisis

• • = • • = •

## Self-enforcing (or Panglossian) effect

- Tendency to overborrow today when risk of default is high tomorrow
- Explanation: you don't repay when you default, so why care?
- Similar to OLG models: risk premium = probability of death  $\Rightarrow$  the two cancel out
- Technically: in the Euler equation, the derivative of expectation term w.r.t. debt is zero over the default set

#### The Model

- Presentation
- The two regimes
- The risk of multiple equilibria
- Generalization and reduced form

#### 2 Empirical analysis

- Dataset
- Econometric model
- Estimation technique and results

#### The Model

- Presentation
- The two regimes
- The risk of multiple equilibria
- Generalization and reduced form

#### Empirical analysis

- Dataset
- Econometric model
- Estimation technique and results

#### The Model

#### Presentation

- The two regimes
- The risk of multiple equilibria
- Generalization and reduced form

#### Empirical analysis

- Dataset
- Econometric model
- Estimation technique and results

# Model features (1/2)

- In the spirit of Eaton and Gersovitz (1981), Arellano (2008)
- Discrete time
- Sovereign country (with representative agent) produces and consumes
- Production is an exogenous stochastic stream (*i.i.d.* growth rate)
- Difference between production and consumption financed on international markets
  - $\Rightarrow$  accumulation of a stock of external debt
- Debt is short-term and needs to be refinanced every year
- Debt repayments not contingent to the state of nature
- Discount rate  $\delta$  supposed greater than  $r \gamma \bar{g} (\gamma \text{ is inter-temporal elasticity of substitution})$ 
  - $\Rightarrow$  the country has an inner tendency to borrow

- 4 同 6 4 日 6 4 日 6

# Model features (2/2)

- The country can make the strategic decision to default
- Default implies financial autarky and cost on output
- Anticipating default, international markets may impose a (model-consistent) risk premium or ration the country
- Two differences with standard models:
  - negotiation occurs on the amount lent today rather than the amount due tomorrow
  - output cost of default has two components: a social loss, and a fraction grabbed by investors

# A two-period model (1/3)

Country perspective

- Period 1:
  - Output Q<sub>1</sub> known
  - Country borrows L₁, for a future repayment D₂ (interest rate is D₂/L₁ − 1)
  - It consumes  $C_1 = Q_1 + L_1$
- Period 2:
  - ▶ Output can take two values:  $Q_2^+ > Q_2^-$  (resp. with probability 1 p and p)
  - If country repays:  $C_2 = Q_2 D_2$
  - If it defaults:  $C_2 = (1 \lambda) \mu Q_2$

Objective:

$$\max_{C_1,C_2} u(C_1) + \beta \mathbb{E}_1 u(C_2)$$

- 4 週 ト - 4 三 ト - 4 三 ト

# A two-period model (2/3)

Output cost of default

- In case of default:
  - Country gets  $(1 \lambda)\mu Q_2$
  - Investors get λµQ<sub>2</sub>
  - ► Social loss is (1 − µ)Q<sub>2</sub>
- The parameter μ measures the negative externality associated to a default. If μ = 1, then default is efficient *ex post*.
- The parameter  $\lambda$  measures the ability of creditors to seize country ressources. If  $\lambda = 0$ , recovery for creditors is null.

# A two-period model (3/3)

Investors perspective

- Investors risk neutral, subject to zero-profit condition.
- If repayment is expected (safe case):

$$L_1(1+r)=D_2^s$$

• If default is expected (unsafe case):

$$L_1(1+r) = (1-p)D_2^u + p\lambda\mu Q_2$$

#### The Model

#### Presentation

#### • The two regimes

- The risk of multiple equilibria
- Generalization and reduced form

#### Empirical analysis

- Dataset
- Econometric model
- Estimation technique and results

### The safe case

• Repayment in period 2 occurs when:

$$D_2 \leq \kappa Q_2$$

where  $\kappa = 1 - (1 - \lambda)\mu$ 

• In that case, the FOC is:

$$u'(Q_1+L_1) = \beta(1+r)\{(1-p)u'(Q_2^+-L_1(1+r))+pu'(Q_2^--L_1(1+r))\}$$

•  $C_1$  is increasing in  $Q_2^- \Rightarrow$  prudent behavior

### The unsafe case

- Occurs when  $D_2 > \kappa Q_2$
- The FOC becomes:

$$u'(C_1) = \beta(1+r)u'(C_2^+)$$

- The risk premium and the probability of the bad state cancel each other
- If  $\lambda>$  0,  $Q_2^-$  only plays a role in the supply curve for lending; if  $\lambda=$  0, no role at all
- Panglossian/self-enforcing effect: country indifferent to the bad state of nature; tendency to rationally overborrow

#### The Model

#### Presentation

• The two regimes

#### • The risk of multiple equilibria

• Generalization and reduced form

#### Empirical analysis

- Dataset
- Econometric model
- Estimation technique and results

## Characterization of multiple equilibria (1/2)

- Usually, the risk determines the interest rate
- But the reverse causation can also be at work (snowball effect)
- Possible when  $D_2^s \leq \kappa Q_2^-$  and  $D_2^u > \kappa Q_2$ , *i.e.*

$$\kappa Q_2^- - p(1-\mu)Q_2^- < L_1(1+r) \le \kappa Q_2^-$$

• Range of multiple equilibria smaller as  $\mu$  get bigger; nil when  $\mu = 1$   $\Rightarrow$  multiple equilibria disappear when fundamentals are immune to the crisis

### Characterization of multiple equilibria (2/2)





#### The Model

- Presentation
- The two regimes
- The risk of multiple equilibria
- Generalization and reduced form

#### Empirical analysis

- Dataset
- Econometric model
- Estimation technique and results

### Generalization to infinite horizon

- Insights of the two-period model still hold
- The impossibility of multiple equilibria needs a slightly stronger condition than  $\mu = 1$  (we name it a *smooth default*)
- Panglossian effect now written as:

$$u'(C_t) = \beta(1+r)(1+\xi_{t+1|t})\mathbb{E}_t\left[u'(C_{t+1}) | \mathscr{R}(D_{t+1}, Q_t)\right]$$

where  $\xi_{t+1|t} > 0$  reduces the propensity to borrow (nil for the *smooth default* case)

• The recovery of investors  $\lambda$  is supposed stochastic

## Reduced form of debt dynamics

$$\hat{D}_{t+1} = a_1 + a_2 \, \hat{D}_t - a_3 \, g_{t+1} \hat{D}_t + a_4 \, (g_{t+1|t}^+ - \bar{g}) + \varepsilon_{t+1}^d$$

where

- $\varepsilon_{t+1}^d$  is deviation from "desired" debt (Alesina and Tabllini 1990; Beetsma and Mavromatis 2014)
- $g_{t+1|t}^+ \bar{g}$  is the Panglossian effect: growth differential between repayment states and average state

The Panglossian term can be rewritten as  $\pi_{t+1|t} (g_{t+1|t}^+ - g_{t+1|t}^-)$ , with  $\pi_{t+1|t}$  the probability of default and  $g_{t+1|t}^+ - g_{t+1|t}^-$  the growth differential between repayment states and default states

#### The Mode

- Presentation
- The two regimes
- The risk of multiple equilibria
- Generalization and reduced form

#### 2 Empirical analysis

- Dataset
- Econometric model
- Estimation technique and results

#### The Mode

- Presentation
- The two regimes
- The risk of multiple equilibria
- Generalization and reduced form

### 2 Empirical analysis

- Dataset
- Econometric model
- Estimation technique and results

# Debt crises

Definition of Kraay & Nehru (2004)

For a given year, a country is considered to be in debt crisis if at least one of the following 3 conditions holds:

- it receives debt relief from the Paris Club (rescheduling and/or debt reduction)
- the sum of its principal and interest arrears is above 5% of outstanding debt stock
- it receives substantial balance of payments support from the IMF through a non-concessionnal Standby Arrangement (SBA) or Extended Fund Facility (EFF) Threshold: amount of support > 50% of IMF quota

## **Episodes**

- Having defined *years* of crisis (or no-crisis), we define *episodes* made of several consecutive years
- *Distress episodes*: at least 3 consecutive years of crisis, preceded by at least 3 years without crisis
- Normal times episodes: 5 consecutive years without crisis
- An episode is characterized by 4 informations:
  - type: distress or normal
  - 2 country
  - year of beginning
  - Iength (in years)

#### Data sources

- World Bank's *Global Development Finance* for data on debt levels and payment arrears
- Paris Club website for information on debt reliefs
- IMF's International Financial Statistics for data on SBA/EFF commitments
- World Bank's *World Development Indicators* for general macroeconomic variables
- *Penn Word Tables* for data on Purchasing Power Parity (PPP) variables

## Sample

#### • Country set:

- 135 developing countries (World Bank definition)
- 38 with no access to private financial markets
- = 97 countries in the sample
- Time span: 1970-2004
- Number of episodes obtained:
  - 70 distress episodes
  - 223 normal times episodes
- Average default episode length: 13.3 years
- Average GDP loss peak to through: 1.9%

#### The Mode

- Presentation
- The two regimes
- The risk of multiple equilibria
- Generalization and reduced form

#### 2 Empirical analysis

Dataset

#### Econometric model

• Estimation technique and results

### Core equations

$$\begin{split} d_{it} &= X_{i,t-1}^{d} \eta^{d} + g_{it} X_{i,t-1}^{d,g} \eta^{d,g} + \varepsilon_{it}^{d} \\ g_{it} &= X_{i,t-1}^{g} \eta^{g} + \delta_{it} X_{i,t-1}^{g,\delta} \eta^{g,\delta} + \varepsilon_{it}^{g} \\ \delta_{it} &= \mathbf{1}_{\{X_{i,t-1}^{\delta} \eta^{\delta} + d_{it} X_{i,t-1}^{\delta,d} \eta^{\delta,d} + \varepsilon_{it}^{\delta} > 0\} \end{split}$$

where:

- *i* country concerned by the episode
- t beginning year of the episode
- dit debt-to-GDP ratio
- git growth rate
- $\delta_{it}$  dummy for debt crisis
- X vectors of exogenous variables
- $\eta$  parameters
- $\varepsilon\,$  exogenous shocks

## Possibility of multiple equilibria

- Crisis explained by a probit equation where debt/GDP appears
- Debt/GDP explained by two linear predictors, the second of which is growth
- Growth itself gets a malus in case of crisis
  ⇒ endogeneity of the fundamentals to the crisis
- Model not well-specified at this stage: circular dependency of the three endogenous variables
- For a given set of exogenous and a given draw of random shocks, one could have a crisis equilibrium and a no-crisis equilibrium ⇒ possibility of self-fulfilling crises

### Completion of the model specification

- *Solution*: add a *sunspot*, which determines the equilibrium when both are possible
- The sunspot is "on" with probability p
- For a given set of exogenous and a given draw of random shocks, three cases are possible:
  - Only the no-crisis equilibrium is possible
  - Only the crisis equilibrium is possible ⇒ crisis driven by an exogenous shock
  - South crisis and no-crisis equilibrium are possible The crisis occurs if sunspot is "on" ⇒ self-fulfilling crisis
- A *posteriori*, for a given observed crisis, it is possible to compute the probability that it was self-fulfilling rather than exogenously driven

#### The Mode

- Presentation
- The two regimes
- The risk of multiple equilibria
- Generalization and reduced form

#### 2 Empirical analysis

- Dataset
- Econometric model
- Estimation technique and results

### Estimation technique

- Maximum likelihood estimation, with randomization algorithm to deal with the non-global concavity of likelihood function
- Exogenous variables taken two years before beginning of episode
- Concerning parameter *p* (= the probability of sunspot being "on"):
  - It is never statistically significant
  - Therefore we calibrate with sensible values
    - ★ p = 1: markets panic-prone
    - \* p = 0.5: markets lose confidence half of the time

## Measuring the Panglossian effect

- Constructed variable:  $\pi_{t+1|t} \left( g_{t+1|t}^+ g_{t+1|t}^- \right)$
- Probability of default computed with a first-stage Probit
- Growth gap approximated by the mean growth rate (accross the whole sample) above and below quantile  $\pi_{it}$
- $\bullet$  Generated regressor  $\Rightarrow$  standard errors corrected by the Murphy and Topel (1985) method

### Estimation results

| Debt/GDP ratio dynamics                                                                                                                                                                                                                                        |                                                                                                          |                                                                                                          |                                                                                                          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|
| $\eta^d$ : Debt/GDP (t - 2)                                                                                                                                                                                                                                    | 1.204***                                                                                                 | 1.205***                                                                                                 | 1.104***                                                                                                 |  |  |
|                                                                                                                                                                                                                                                                | (0.023)                                                                                                  | (0.023)                                                                                                  | (0.075)                                                                                                  |  |  |
| $\eta^d$ : Crisis prob × Growth gap $\hat{g}$ $(t/t-2)$                                                                                                                                                                                                        |                                                                                                          |                                                                                                          | 0.821**                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                |                                                                                                          |                                                                                                          | (0.262)                                                                                                  |  |  |
| $\eta^{d,g}$ : Debt/GDP $(t-2) \times$ Growth $(t)$                                                                                                                                                                                                            | -1.722***                                                                                                | -1.719***                                                                                                | -1.651***                                                                                                |  |  |
|                                                                                                                                                                                                                                                                | (0.214)                                                                                                  | (0.210)                                                                                                  | (0.320)                                                                                                  |  |  |
| Growth dynamics                                                                                                                                                                                                                                                |                                                                                                          |                                                                                                          |                                                                                                          |  |  |
| $\eta^{g}$ : Log per capita PPP real GDP $(t-2)$                                                                                                                                                                                                               | -0.023**                                                                                                 | -0.025**                                                                                                 | -0.023**                                                                                                 |  |  |
|                                                                                                                                                                                                                                                                | (0.008)                                                                                                  | (0.008)                                                                                                  | (0.007)                                                                                                  |  |  |
| $\eta^g$ : Growth $(t-2)$                                                                                                                                                                                                                                      | 0.281**                                                                                                  | 0.277**                                                                                                  | 0.281**                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                | (0.101)                                                                                                  | (0.101)                                                                                                  | (0.086)                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                |                                                                                                          |                                                                                                          |                                                                                                          |  |  |
| $\eta^{g,o}$ : Debt crisis dummy (t)                                                                                                                                                                                                                           | -0.059***                                                                                                | -0.077***                                                                                                | -0.062***                                                                                                |  |  |
| $\eta^{g,o}$ : Debt crisis dummy ( <i>t</i> )                                                                                                                                                                                                                  | -0.059***<br>(0.015)                                                                                     | -0.077***<br>(0.014)                                                                                     | -0.062***<br>(0.015)                                                                                     |  |  |
| $\eta^{g,o}$ : Debt crisis dummy (t)<br>Debt crisis determinants                                                                                                                                                                                               | -0.059***<br>(0.015)                                                                                     | -0.077***<br>(0.014)                                                                                     | -0.062***<br>(0.015)                                                                                     |  |  |
| $\eta^{g,o}$ : Debt crisis dummy (t)<br><b>Debt crisis determinants</b><br>$\eta^{\delta}$ : Log per capita PPP real GDP (t-2)                                                                                                                                 | -0.059***<br>(0.015)<br>-0.365**                                                                         | -0.077***<br>(0.014)<br>-0.426**                                                                         | -0.062***<br>(0.015)<br>-0.356**                                                                         |  |  |
| $\eta^{g,o}$ : Debt crisis dummy (t)<br><b>Debt crisis determinants</b><br>$\eta^{\delta}$ : Log per capita PPP real GDP (t-2)                                                                                                                                 | -0.059***<br>(0.015)<br>-0.365**<br>(0.132)                                                              | -0.077***<br>(0.014)<br>-0.426**<br>(0.133)                                                              | -0.062***<br>(0.015)<br>-0.356**<br>(0.135)                                                              |  |  |
| $η^{g,o}$ : Debt crisis dummy (t)<br>Debt crisis determinants<br>$η^{\delta}$ : Log per capita PPP real GDP (t-2)<br>$η^{\delta}$ : US\$ GDP / PPP GDP (t-2)                                                                                                   | -0.059***<br>(0.015)<br>-0.365**<br>(0.132)<br>1.477**                                                   | -0.077***<br>(0.014)<br>-0.426**<br>(0.133)<br>1.582**                                                   | -0.062***<br>(0.015)<br>-0.356**<br>(0.135)<br>1.454**                                                   |  |  |
| $η^{g,o}$ : Debt crisis dummy (t)<br>Debt crisis determinants<br>$η^{\delta}$ : Log per capita PPP real GDP (t-2)<br>$η^{\delta}$ : US\$ GDP / PPP GDP (t-2)                                                                                                   | -0.059***<br>(0.015)<br>-0.365**<br>(0.132)<br>1.477**<br>(0.535)                                        | -0.077***<br>(0.014)<br>-0.426**<br>(0.133)<br>1.582**<br>(0.530)                                        | -0.062***<br>(0.015)<br>-0.356**<br>(0.135)<br>1.454**<br>(0.525)                                        |  |  |
| $\eta^{g,o}$ : Debt crisis dummy (t)<br>Debt crisis determinants<br>$\eta^{\delta}$ : Log per capita PPP real GDP (t-2)<br>$\eta^{\delta}$ : US\$ GDP / PPP GDP (t-2)<br>$\eta^{\delta,d}$ : Debt/GDP (t)                                                      | -0.059***<br>(0.015)<br>-0.365**<br>(0.132)<br>1.477**<br>(0.535)<br>2.883***                            | -0.077***<br>(0.014)<br>-0.426**<br>(0.133)<br>1.582**<br>(0.530)<br>2.971***                            | -0.062***<br>(0.015)<br>-0.356**<br>(0.135)<br>1.454**<br>(0.525)<br>2.815***                            |  |  |
| $\eta^{g,o}$ : Debt crisis dummy (t)<br>Debt crisis determinants<br>$\eta^{\delta}$ : Log per capita PPP real GDP (t-2)<br>$\eta^{\delta}$ : US\$ GDP / PPP GDP (t-2)<br>$\eta^{\delta,d}$ : Debt/GDP (t)                                                      | -0.059***<br>(0.015)<br>-0.365**<br>(0.132)<br>1.477**<br>(0.535)<br>2.883***<br>(0.456)                 | -0.077***<br>(0.014)<br>-0.426**<br>(0.133)<br>1.582**<br>(0.530)<br>2.971***<br>(0.465)                 | -0.062***<br>(0.015)<br>-0.356**<br>(0.135)<br>1.454**<br>(0.525)<br>2.815***<br>(0.429)                 |  |  |
| $\eta^{g,o}$ : Debt crisis dummy (t)<br>Debt crisis determinants<br>$\eta^{\delta}$ : Log per capita PPP real GDP (t-2)<br>$\eta^{\delta}$ : US\$ GDP / PPP GDP (t-2)<br>$\eta^{\delta,d}$ : Debt/GDP (t)<br>p: Sunspot Bernoulli parameter                    | -0.059***<br>(0.015)<br>-0.365**<br>(0.132)<br>1.477**<br>(0.535)<br>2.883***<br>(0.456)<br>1.0          | -0.077***<br>(0.014)<br>-0.426**<br>(0.133)<br>1.582**<br>(0.530)<br>2.971***<br>(0.465)<br>0.5          | -0.062***<br>(0.015)<br>-0.356**<br>(0.135)<br>1.454**<br>(0.525)<br>2.815***<br>(0.429)<br>1.0          |  |  |
| $η^{g,o}$ : Debt crisis dummy (t)<br>Debt crisis determinants<br>$η^{\delta}$ : Log per capita PPP real GDP (t-2)<br>$η^{\delta}$ : US\$ GDP / PPP GDP (t-2)<br>$η^{\delta,d}$ : Debt/GDP (t)<br>p: Sunspot Bernoulli parameter<br>Self-fulfilling probability | -0.059***<br>(0.015)<br>-0.365**<br>(0.132)<br>1.477**<br>(0.535)<br>2.883***<br>(0.456)<br>1.0<br>0.111 | -0.077***<br>(0.014)<br>-0.426**<br>(0.133)<br>1.582**<br>(0.530)<br>2.971***<br>(0.465)<br>0.5<br>0.077 | -0.062***<br>(0.015)<br>-0.356**<br>(0.135)<br>1.454**<br>(0.525)<br>2.815***<br>(0.429)<br>1.0<br>0.111 |  |  |

35 / 40 July 18, 2014

### Robustness checks

- The Panglossian effect is not simply a proxy for the risk premium effect
- It is not either a proxy for "bad news," which trigger an debt increase in a model of inter-temporal consumption smoothing (tested by introducing a measure of the business cycle)
- The following possible missing variables in growth equation (Moral-Benito, 2012) have been tested:
  - price of investment goods
  - distance to major world cities
  - political rights

### For each crisis, probability that it was self-fulfilling

i.e., probability that it would have been avoided if confidence had been maintained

| Country     | Year | Crisis length | Probability |
|-------------|------|---------------|-------------|
| Jordan      | 1989 | 16            | 0.2%        |
| Somalia     | 1981 | 24            | 1.4%        |
| Rwanda      | 1994 | 11            | 1.4%        |
| Congo, Rep. | 1985 | 20            | 1.6%        |
| :           | :    | :             | ÷           |
| Venezuela   | 1989 | 4             | 19.3%       |
| Indonesia   | 1997 | 8             | 19.6%       |
| El Salvador | 1990 | 3             | 19.9%       |
| Argentina   | 1983 | 13            | 20.3%       |

Computed for p = 1

(日) (同) (三) (三)

## Model simulation

Contribution of each shock to crises

| Effect                                     | Contribution |
|--------------------------------------------|--------------|
| Market shock $(\varepsilon_{it}^{\delta})$ | 55.8%        |
| Debt shock $(\varepsilon_{it}^d)$          | 15.2%        |
| Panglossian effect                         | 12.0%        |
| Growth shock $(\varepsilon_{it}^{g})$      | 11.0%        |
| Self-fulfilling effect $(\zeta_{it})$      | 6.1%         |
| Total                                      | 100.0%       |

Monte-Carlo simulations of the benchmark estimated model. Results computed over 2,500 simulations of a 10-year duration and starting from a debt-to-GDP ratio of 60%.

(日) (同) (三) (三)

#### The Mode

- Presentation
- The two regimes
- The risk of multiple equilibria
- Generalization and reduced form

#### Empirical analysis

- Dataset
- Econometric model
- Estimation technique and results

- Two endogenous forces at work in debt crises:
  - self-enforcing / Panglossian effect
  - self-fulfilling effect
- Categories that are empirically relevant: taken together, they explain between 1/4 and 1/5 of crises
- However, the majority of crises are of an exogenous nature (earthquake model)
- Policy implications:
  - Promote the usage of state contingent debt (solution to the exogenously driven case)
  - Debate about debt restructuring (solution to the self-fulfilling case) less important than finding more innovative sources of financing