The Eurozone Debt Crisis: A New-Keynesian DSGE model with default risk

Daniel Cohen^{1,2} Mathilde Viennot¹ Sébastien Villemot³

¹Paris School of Economics

²CEPR

³OFCE – Sciences Po

PANORisk workshop - 7 June 2016

Motivation

- Eurozone (EZ) debt crisis does not fit well the literature on sovereign debt models
- Greece:
 - Unexpected shock on 2009 public deficit (final figure: 15.2% GDP)
 - Then, painful and long reduction of deficit (via fiscal austerity)
 - Standard models assume that deficit is a control variable
- Ireland:
 - Debt soared because of contingent liabilities in relation to banking sector
 - Large shock to debt-to-GDP ratio, unrelated to deficit (Ireland was fulfilling all Maastricht criteria before the financial crisis)
 - Standard models assume rather smooth process for GDP

Our modelling strategy

- Habit consumption (for making adjustment painful)
- Discontinuous stochastic process for GDP
- Incorporate standard NK features
- Small open economy framework, in 2 flavors:
 - flexible exchange regime
 - monetary union

Outline

- 2 Calibration and baseline results
- 3 Sensitivity analysis

Cohen, Viennot, Villemot (OFCE)

Outline

- 2 Calibration and baseline results
- 3 Sensitivity analysis

4 Conclusion

Cohen, Viennot, Villemot (OFCE)

э

▲ 伊 → ▲ 三

Main features

- Small open economy
- Optimizing households who consume, supply labor and invest in physical capital
- Firms produce using labor and capital
- Nominal rigidities: good prices, wages
- Real rigidities: habit consumption, investment cost
- Fiscal authority with debt rule
- Government debt held both domestically and abroad
- Two model flavors:
 - flexible exchange rate (independant monetary policy)
 - monetary union (nominal interest rate determined abroad)

Modelling sovereign default

- The fiscal authority can default on external part of its debt
- In case of default, two costs: GDP loss, financial autarky
- Optimal decision by comparing two value functions
- Technical problem: dimensionality of the problem
- Our (imperfect) solution: satellite model
 - In normal times, agents do not internalize the possibility of a future default (in particular, no endogenous risk premium)
 - But allows us to compute default probabilities on simulated paths

Households

• Program for household *ι*:

$$\mathbb{E}_0\sum_{t=0}^\infty\beta^t U_t^\iota$$

where:

$$u^{\iota}(C_t^{\iota}, H_t, L_t^{\iota}) = \log(C_t^{\iota} - H_t) - \varphi \frac{(L_t^{\iota})^{1 + \sigma_L}}{1 + \sigma_L}$$

with $H_t = h C_{t-1}$

• Budget constraint:

$$B_{t}^{\iota} + C_{t}^{\iota} = \frac{R_{t-1} + \Delta_{t-1}}{\pi_{t}} B_{t-1}^{\iota} + Y_{t}^{\iota} - I_{t}^{\iota} - \tau_{t} C_{t}^{\iota}$$

$$Y_t^{\iota} = w_t^{\iota} L_t^{\iota} + A_t^{\iota} + (r_t^k z_t^{\iota} - \psi(z_t^{\iota})) K_{t-1}^{\iota} + Div_t^{\iota}$$

Euler equation Symmetric across households

$$\mathbb{E}_t \left[\beta \frac{C_t - H_t}{C_{t+1} - H_{t+1}} \frac{1 - \tau_t}{1 - \tau_{t+1}} \frac{R_t + \Delta_t}{\pi_{t+1}} \right] = 1$$

where Δ_t is risk premium.

Image: A math a math

Labor market

- Differentiated labor varieties
- Standard Calvo pricing
- Indexation of non-reoptimized wages on inflation
- State contingent Arrow-Debreu securities shield against idiosyncratic labor income shock

Capital accumulation

$$\mathcal{K}_{t} = (1 - \delta)\mathcal{K}_{t-1} + \left[1 - S\left(\frac{I_{t}}{I_{t-1}}\right)\right]I_{t}$$
where $S\left(\frac{I_{t}}{I_{t-1}}\right) = \frac{\kappa_{l}}{2}\left(\frac{I_{t}}{I_{t-1}} - 1\right)^{2}$

$$\mathbb{E}_{t} \left[\frac{1}{\beta} \left(\frac{C_{t+1} - H_{t+1}}{C_{t} - H_{t}} \frac{1 - \tau_{t+1}}{1 - \tau_{t}} \right) \right] q_{t} = q_{t+1}(1 - \delta) + z_{t+1}r_{t+1}^{k} - \psi(z_{t+1})$$

$$q_{t} \left[1 - S\left(\frac{I_{t}}{I_{t-1}}\right) \right] - 1 + \beta \mathbb{E}_{t}q_{t+1} \left(\frac{C_{t} - H_{t}}{C_{t+1} - H_{t+1}} \frac{1 - \tau_{t}}{1 - \tau_{t+1}} \right)$$

$$= q_{t}S'\left(\frac{I_{t}}{I_{t-1}}\right) \frac{I_{t}}{I_{t-1}}$$

$$r_{t}^{k} = \psi'(z_{t})$$

Cohen, Viennot, Villemot (OFCE)

∃ ⊳ 7 June 2016 11 / 29

æ

Production

• Final good firms:

$$Y_t = \left(\int_0^1 y_{j,t}^{\frac{\epsilon-1}{\epsilon}} dj\right)^{\frac{\epsilon}{\epsilon-1}}$$

• Intermediate good firms:

$$y_{j,t} = A_t (z_t K_{j,t-1})^{\alpha_K} M_t^{\alpha_M} L_{jt}^{1-\alpha_K-\alpha_M}$$

with standard Calvo pricing

Fiscal policy

• Budget constraint:

$$B_t + D_t + \tau_t C_t = \frac{R_{t-1} + \Delta_{t-1}}{\pi_t} B_{t-1} + \frac{R_{t-1}^* + \Delta_{t-1}}{\pi_t} \frac{E_t}{E_{t-1}} D_{t-1} + G_t$$

• Fiscal rule:

$$\tau_t C_t - G_t - Int_t = \alpha_B \left(B_{t-1} + \frac{E_t}{E_{t-1}} D_{t-1} - \overline{BD}_t \right)$$

where

$$Int_{t} = \left(\frac{R_{t-1} + \Delta_{t-1}}{\pi_{t}} - 1\right) B_{t-1} + \left(\frac{R_{t-1}^{*} + \Delta_{t-1}}{\pi_{t}} - 1\right) \frac{E_{t}}{E_{t-1}} D_{t-1}$$

< 17 × <

External sector

• Exports:

$$X_t = \varepsilon_t^{\psi} Y_t^*$$

• Balance of payments equilibrium:

$$D_{t} = \frac{R_{t-1}^{*} + \Delta_{t-1}}{\pi_{t}} \frac{E_{t}}{E_{t-1}} D_{t-1} + \varepsilon_{t} M_{t} - X_{t}$$

Cohen, Viennot, Villemot (OFCE)

∃ ⊳

< 🗇 🕨

Monetary policy and exchange rate Flexible exchange rate (FLEX)

• Taylor rule:

$$\frac{R_t}{\bar{R}} = \left(\frac{R_{t-1}}{\bar{R}}\right)^{\rho_{\pi}} \left(\frac{\pi_t}{\bar{\pi}}\right)^{r_{\pi}(1-\rho_{\pi})}$$

• UIP:

$$R_t + \Delta_t = \mathbb{E}_t \left(R_t^* \frac{E_{t+1}}{E_t} \right) + \vartheta \left(e^{(D_t - \bar{D})} - 1 \right)$$

• Risk premium:

 $\Delta_t = 0$

3

∃ ⇒

Monetary policy and exchange rate Monetary union (EMU)

• No autonomous monetary policy:

$$R_t = R_t^*$$

Real exchange rate:

$$\frac{E_t}{E_{t-1}} = \frac{\pi_t^*}{\pi_t}$$

• Risk premium (computed on external part of debt):

$$\Delta_t = \psi_{RP} \left(e^{D_t - \bar{D}} - 1 \right)$$

Cohen, Viennot, Villemot (OFCE)

7 June 2016 16 / 29

Satellite default model

• After a default, proportional cost on GDP:

$$Y_t^d = (1 - \lambda_Q) Y_t$$

• Government budget constraint becomes:

$$B_t + T_t = rac{R_{t-1} + \Delta_{t-1}}{\pi_t} B_{t-1} + G_t$$

- Other equations remain essentially the same
- This defines a default value function J^d
- Default threshold: D such that $J^d = J^r$ (given other state variables)
- Default occurs when $J^d > J^r$ (given the state variables)
- Simulation of 10,000 points for computing default probability
- Simplification: possibility of default not anticipated by agents

Outline

2 Calibration and baseline results

3 Sensitivity analysis

4 Conclusion

Cohen, Viennot, Villemot (OFCE)

æ

Calibration (selected parameters)

For a small country within the Euro area. Standard values for most parameters.

Parameter	Symbol	Value
Consumption habit	h	0.85
Discount factor	β	0.995
Total debt target	\overline{BD}_t	$2.4Y_{t}$
Back to equilibrium debt targets (fiscal rule)	α_B	1/80
Risk premium in UIP (only FLEX)	ϑ	0.001
Risk premium on debt (only EMU) Δ_t		0.008
External debt target	\overline{D}	0.3 <i>Ŷ</i>
Loss of output in autarky in the FLEX model (% of GDP)	λ_Q	0.03
Loss of output in autarky in the EMU model (% of GDP)	λ_Q	0.04

Default probabilities and debt thresholds

		Default probability	Mean external debt	Default threshold
Baseline	FLEX	0%	7.5%	60%
$(ar{D}=0.3ar{Y})$	EMU	0.5%	7.5%	128%
$\bar{D} = 0.8\bar{Y}$	FLEX	0.5%	20%	60%
	EMU	2.2%	20%	117%

< **1** → <

Outline

- 2 Calibration and baseline results
- Sensitivity analysis

4 Conclusion

Cohen, Viennot, Villemot (OFCE)

э

Sensitivity to habit consumption (h) Baseline calibration ($\overline{D} = 0.3\overline{Y}$)

7 June 2016 22 / 29

Sensitivity to habit consumption (h) Medium external debt ($\bar{D} = 0.8\bar{Y}$)

Sensitivity to external debt target (\overline{D})

7 June 2016 24 / 29

Sensitivity to total debt target (\overline{BD})

Sensitivity to speed of convergence (α_B)

7 June 2016 26 / 29

Outline

- 2 Calibration and baseline results
- 3 Sensitivity analysis

э

< A > <

Main preliminary results

- Critical differences between flexible regime and monetary union
- Default thresholds larger in flexible economy...
- ... but thresholds more likely to be reached in monetary union
- Fast speed of convergence increases defaults in flexible regime, diminishes them in monetary union
- In EMU, external debt plays a critical role for stabilization...
- ... as a consequence, debt more volatile and default risks are more important

Future work

- Incorporate possibility of redemption after default
- Analyze impact of a discrete shock on debt-to-GDP ratio
- Allow default on total debt (and not just external debt)
- Handle (some) nonlinearities