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Introduction

Deterministic = perfect foresight
Perfect anticipation of all shocks in the future, and therefore of all
future choice variables
Can be solved exactly (up to rounding errors)
Full nonlinearities taken into account
Often useful when starting study of a model, or when studying the
effect of strong nonlinearities
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The (deterministic) neoclassical growth model

max
{ct}∞t=1

∞∑
t=1

βt−1 c1−σ
t

1− σ
s.t.

ct + kt = Atkαt−1 + (1− δ)kt−1

First order conditions:

c−σt = βc−σt+1

(
αAt+1kα−1

t + 1− δ
)

ct + kt = Atkαt−1 + (1− δ)kt−1

Steady state:

k̄ =
(
1− β(1− δ)

βαĀ

) 1
α−1

c̄ = Āk̄α − δk̄

Note the absence of stochastic elements! No expectancy term, no
probability distribution
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The general problem

Deterministic, perfect foresight, case:

f (yt+1, yt , yt−1, ut) = 0

y : vector of endogenous variables
u : vector of exogenous shocks

Identification rule: as many endogenous (y) as equations (f )
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Steady state

A steady state, ȳ , for the model satisfies

f (ȳ , ȳ , ȳ , ū) = 0

Note that a steady state is conditional to:
I The steady state values of exogenous variables ū
I The value of parameters (implicit in the above definition)

Even for a given set of exogenous and parameter values, some
(nonlinear) models have several steady states
The steady state is computed by Dynare with the steady command
That command internally uses a nonlinear solver
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What if more than one lead or one lag?

A model with more than one lead or lag can be transformed in the
form with one lead and one lag using auxiliary variables
Transformation done automatically by Dynare
For example, if there is a variable with two leads xt+2:

I create a new auxiliary variable a
I replace all occurrences of xt+2 by at+1
I add a new equation: at = xt+1

Symmetric process for variables with more than one lag

Sébastien Villemot (OFCE) Deterministic Models June 13, 2017 8 / 53



Return to the neoclassical growth model

yt =
(

ct
kt

)

ut = At

f (yt) =
(

c−σt − βc−σt+1

(
αAt+1kα−1

t + 1− δ
)

ct + kt − Atkαt−1 + (1− δ)kt−1

)
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Solution of deterministic models

Approximation: impose return to equilibrium in finite time instead of
asymptotically
However possible to return to another point than the steady state
Useful to study full implications of nonlinearities
Computes the trajectory of the variables numerically
Uses a Newton-type method on the stacked system
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A two-boundary value problem
Approximation of an infinite horizon model by a finite horizon one

The stacked system for a simulation over T periods:
f (y2, y1, y0, u1) = 0
f (y3, y2, y1, u2) = 0

...
f (yT+1, yT , yT−1, uT ) = 0

for y0 and yT+1 = ȳ given.

Compact representation:
F (Y ) = 0

where Y =
[

y ′1 y ′2 . . . y ′T
]′
.
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A Newton approach

Start from an initial guess Y (0)

Iterate. Updated solutions Y (k+1) are obtained by solving:

F (Y (k)) +
[
∂F
∂Y

] (
Y (k+1) − Y (k)

)
= 0

Terminal condition:

||Y (k+1) − Y (k)|| < εY and/or ||F (Y (k))|| < εF
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A practical difficulty

The size of the Jacobian is very large. For a simulation over T periods of
a model with n endogenous variables, it is a matrix of order n × T .
3 ways of dealing with it:

With older computers, it was more of a problem than today: LBJ (the
default method in Dynare ≤ 4.2) exploited the particular structure of
this Jacobian using relaxation techniques
Handle the Jacobian as one large, sparse, matrix (now the default
method in Dynare ≥ 4.3)
Block decomposition (divide-and-conquer methods) implemented by
Mihoubi
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Shape of the Jacobian

∂F
∂Y =



B1 C1
A2 B2 C2

. . . . . . . . .
At Bt Ct

. . . . . . . . .
AT−1 BT−1 CT−1

AT BT


where

As = ∂f
∂yt−1

(ys+1, ys , ys−1)

Bs = ∂f
∂yt

(ys+1, ys , ys−1)

Cs = ∂f
∂yt+1

(ys+1, ys , ys−1)
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Relaxation (1/5)

The idea is to triangularize the stacked system:

B1 C1
A2 B2 C2

. . . . . . . . .
. . . . . . . . .

AT−1 BT−1 CT−1
AT BT


∆Y = −



f (y2, y1, y0, u1)
f (y3, y2, y1, u2)

...

...
f (yT , yT−1, yT , uT−1)
f (yT+1, yT , yT−1, uT )


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Relaxation (2/5)

First period is special:

I D1
B2 − A2D1 C2

A3 B3 C3
. . . . . . . . .

AT−1 BT−1 CT−1
AT BT


∆Y = −



d1
f (y3, y2, y1, u2) + A2d1

f (y4, y3, y2, u3)
...

f (yT , yT−1, yT , uT−1)
f (yT+1, yT , yT−1, uT )


where

D1 = B−1
1 C1

d1 = B−1
1 f (y2, y1, y0, u1)
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Relaxation (3/5)

Normal iteration:

I D1
I D2

B3 − A3D2 C3
. . . . . . . . .

AT−1 BT−1 CT−1
AT BT


∆Y = −



d1
d2

f (y4, y3, y2, u3) + A3d2
...

f (yT , yT−1, yT , uT−1)
f (yT+1, yT , yT−1, uT )


where

D2 = (B2 − A2D1)−1C2

d2 = (B2 − A2D1)−1(f (y3, y2, y1, u2) + A2d1)
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Relaxation (4/5)

Final iteration:

I D1
I D2

I D3
. . . . . .

I DT−1
I


∆Y = −



d1
d2
d3
...

dT−1
dT


where

dT = (BT − AT DT−1)−1(f (yT+1, yT , yT−1, uT ) + AT dT−1)
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Relaxation (5/5)

The system is then solved by backward iteration:

yk+1
T = yk

T − dT

yk+1
T−1 = yk

T−1 − dT−1 − DT−1(yk+1
T − yk

T )
...

yk+1
1 = yk

1 − d1 − D1(yk+1
2 − yk

2 )

No need to ever store the whole Jacobian: only the Ds and ds have to
be stored
Relaxation was the default method in Dynare ≤ 4.2, since it was
memory efficient
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Sparse matrix algebra

A sparse matrix is a matrix where most entries are zero
The Jacobian of the deterministic problem is a sparse matrix:

I Lots of zero blocks
I The As , Bs and Cs are themselves sparse

More efficient storage possible than storing all entries
Usually stored as a list of triplets (i , j , v) where (i , j) is a matrix
coordinate and v a non-zero value
Family of optimized algorithms for such matrices (including matrix
inversion for our Newton algorithm)
Available as native objects in MATLAB/Octave
Works well for medium size deterministic models
Nowadays more efficient than relaxation, even though it does not
exploit the particular structure of the Jacobian ⇒ default method in
Dynare ≥ 4.3
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Block decomposition (1/3)

Idea: apply a divide-and-conquer technique to model simulation
Principle: identify recursive and simultaneous blocks in the model
structure
First block (prologue): equations that only involve variables
determined by previous equations; example: AR(1) processes
Last block (epilogue): pure output/reporting equations
In between: simultaneous blocks, that depend recursively on each
other
The identification of the blocks is performed through a matching
between variables and equations (normalization), then a reordering of
both
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Block decomposition (2/3)
Form of the reordered Jacobian
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Block decomposition (3/3)

Can provide a significant speed-up on large models
Implemented in Dynare by Ferhat Mihoubi
Available as option block to the model command
Bigger gains when used in conjunction with bytecode options
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Homotopy

Another divide-and-conquer method, but in the shocks dimension
Useful if shocks so large that convergence does not occur
Idea: achieve convergence on smaller shock size, then use the result
as starting point for bigger shock size
Algorithm:

1 Starting point for simulation path: steady state at all t
2 λ← 0: scaling factor of shocks (simulation succeeds when λ = 1)
3 s ← 1: step size
4 Try to compute simulation with shocks scaling factor equal to λ+ s

(using last successful computation as starting point)
F If success: λ← λ + s. Stop if λ = 1. Otherwise possibly increase s.
F If failure: diminish s.

5 Go to 4
Can be combined with any deterministic solver
Used by default in deterministic simulations in Dynare ≥ 4.5
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Example: neoclassical growth model with investment

The social planner problem is as follows:

max
{ct+j ,`t+j ,kt+j}∞j=0

Et

∞∑
j=0

βju(ct+j , `t+j)

s.t.

yt = ct + it
yt = At f (kt−1, `t)

kt = it + (1− δ)kt−1

At = A?eat

at = ρ at−1 + εt

where εt is an exogenous shock.
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Specifications

Utility function:

u(ct , `t) =

[
cθt (1− `t)1−θ

]1−τ
1− τ

Production function:

f (kt−1, `t) =
[
αkψt−1 + (1− α)`ψt

] 1
ψ
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First order conditions

Euler equation:

uc(ct , `t) = β Et
[
uc(ct+1, `t+1)

(
At+1fk(kt , `t+1) + 1− δ

)]
Arbitrage between consumption and leisure:

u`(ct , `t)
uc(ct , `t) + At f`(kt−1, `t) = 0

Resource constraint:

ct + kt = At f (kt−1, `t) + (1− δ)kt−1
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Calibration

Weight of consumption in utility θ 0.357
Risk aversion τ 2.0
Share of capital in production α 0.45
Elasticity of substitution capital/labor (fct of...) ψ −0.1
Discount factor β 0.99
Depreciation rate δ 0.02
Autocorrelation of productivity ρ 0.8
Steady state level of productivity A? 1
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Scenario 1: Return to equilibrium

Return to equilibrium starting from k0 = 0.5k̄.

Fragment from rbc_det1.mod
...
steady;

ik = varlist_indices(’Capital’,M_.endo_names);
CapitalSS = oo_.steady_state(ik);

histval;
Capital(0) = CapitalSS/2;
end;

simul(periods=300);
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Scenario 2: A temporary shock to TFP

The economy starts from the steady state
There is an unexpected negative shock at the beginning of period 1:
ε1 = −0.1

Fragment from rbc_det2.mod
...
steady;

shocks;
var EfficiencyInnovation;
periods 1;
values -0.1;
end;

simul(periods=100);
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Scenario 3: Pre-announced favorable shocks in the future

The economy starts from the steady state
There is a sequence of positive shocks to At : 4% in period 5 and an
additional 1% during the 4 following periods

Fragment from rbc_det3.mod
...
steady;

shocks;
var EfficiencyInnovation;
periods 4, 5:8;
values 0.04, 0.01;
end;
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Scenario 4: A permanent shock
The economy starts from the initial steady state (a0 = 0)
In period 1, TFP increases by 5% permanently (and this was
unexpected)

Fragment from rbc_det4.mod
...
initval;
EfficiencyInnovation = 0;
end;

steady;

endval;
EfficiencyInnovation = (1-rho)*log(1.05);
end;

steady;
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Scenario 5: A pre-announced permanent shock

The economy starts from the initial steady state (a0 = 0)
In period 6, TFP increases by 5% permanently
A shocks block is used to maintain TFP at its initial level during
periods 1–5

Fragment from rbc_det5.mod
...
// Same initval and endval blocks as in Scenario 4
...

shocks;
var EfficiencyInnovation;
periods 1:5;
values 0;
end;
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Summary of commands

initval for the initial steady state (followed by steady)
endval for the terminal steady state (followed by steady)

histval for initial or terminal conditions out of steady state
shocks for shocks along the simulation path

perfect_foresight_setup prepare the simulation (since Dynare 4.5)
perfect_foresight_solver compute the simulation (since Dynare 4.5)

simul do both operations at the same time (alias for
perfect_foresight_setup +
perfect_foresight_solver)
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Zero nominal interest rate lower bound

Implemented by writing the law of motion under the following form in
Dynare:

it = max
{
0, (1− ρi )i∗ + ρi it−1 + ρπ(πt − π∗) + εi

t

}
Warning: this form will be accepted in a stochastic model, but the
constraint will not be enforced in that case!
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Irreversible investment
Same model than above, but the social planner is constrained to positive
investment paths:

max
{ct+j ,`t+j ,kt+j}∞j=0

∞∑
j=0

βju(ct+j , `t+j)

s.t.

yt = ct + it
yt = At f (kt−1, `t)

kt = it + (1− δ)kt−1

it ≥ 0
At = A?eat

at = ρ at−1 + εt

where the technology (f ) and the preferences (u) are as above.

Sébastien Villemot (OFCE) Deterministic Models June 13, 2017 39 / 53



First order conditions

uc(ct , `t)− µt = β Et
[
uc(ct+1, `t+1) (At+1fk(kt , `t+1) + 1− δ)

− µt+1(1− δ)
]

u`(ct , `t)
uc(ct , `t) + At fl (kt−1, `t) = 0

ct + kt = At f (kt−1, `t) + (1− δ)kt−1

Slackness condition:
µt = 0 and it ≥ 0

or

µt > 0 and it = 0

where µt ≥ 0 is the Lagrange multiplier associated to the non-negativity
constraint for investment.
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Writing this model in Dynare

Slackness condition defined by equation tag mcp

Mixed-complementarity problem (MCP) solver triggered with lmmcp
option of simul.

Fragment from rbcii.mod
(((c^theta)*((1-l)^(1-theta)))^(1-tau))/c - mu
= expterm(1)-beta*mu(1)*(1-delta);

expterm = beta*((((c^theta)*((1-l)^(1-theta)))^(1-tau))/c)
*(alpha*((y/k(-1))^(1-psi))+1-delta);

...
[ mcp = ’i > 0’ ]
mu = 0;

...
simul(periods=400,lmmcp);

Sébastien Villemot (OFCE) Deterministic Models June 13, 2017 41 / 53



Outline

1 Presentation of the problem

2 Solution techniques

3 Shocks: temporary/permanent, unexpected/pre-announced

4 Occasionally binding constraints

5 Extended path

6 Appendix: dealing with nonlinearities using higher order approximation
of stochastic models

Sébastien Villemot (OFCE) Deterministic Models June 13, 2017 42 / 53



Extended path (EP) algorithm

Algorithm for creating a stochastic simulated series
At every period, compute endogenous variables by running a
deterministic simulation with:

I the previous period as initial condition
I the steady state as terminal condition
I a random shock drawn for the current period
I but no shock in the future

Advantages:
I shocks are unexpected at every period
I nonlinearities fully taken into account

Inconvenient: solution under certainty equivalence (Jensen inequality
is violated)
Method introduced by Fair and Taylor (1983)
Implemented by Stéphane Adjemian under the command
extended_path (with option order = 0, which is the default)
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k-step ahead EP

Accuracy can be improved by computing conditional expectation by
quadrature, computing next period endogenous variables with the
previous algorithm
Approximation: at date t, agents assume that there will be no more
shocks after period t + k (hence k measures the degree of future
uncertainty taken into account)
If k = 1: one-step ahead EP; no more certainty equivalence
By recurrence, one can compute a k-step ahead EP: even more
uncertainty taken into account
Difficulty: computing complexity grows exponentially with k
k-step ahead EP triggered with option order = k of
extended_path command
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Local approximation of stochastic models

The general problem:

Et f (yt+1, yt , yt−1, ut) = 0

y : vector of endogenous variables
u : vector of exogenous shocks

with:

E(ut) = 0
E(utu′t) = Σu

E(utu′s) = 0 for t 6= s
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What is a solution to this problem?

A solution is a policy function of the form:

yt = g (yt−1, ut , σ)

where σ is the stochastic scale of the problem and:

ut+1 = σ εt+1

The policy function must satisfy:

Et f (g (g (yt−1, ut , σ) , ut+1, σ) , g (yt−1, ut , σ) , yt−1, ut) = 0
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Local approximations

ĝ (1) (yt+1, ut , σ) = ȳ + gy ŷt−1 + guut

ĝ (2) (yt+1, ut , σ) = ȳ + 1
2gσσ + gy ŷt−1 + guut

+ 1
2 (gyy (ŷt−1 ⊗ ŷt−1) + guu (ut ⊗ ut))

+ gyu (ŷt−1 ⊗ ut)

ĝ (3) (yt+1, ut , σ) = ȳ + 1
2gσσ + 1

6gσσσ + 1
2gσσy ŷt−1 + 1

2gσσuut

+ gy ŷt−1 + guut + . . .
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Breaking certainty equivalence (1/2)

The combination of future uncertainty (future shocks) and nonlinear
relationships makes for precautionary motives or risk premia.

1st order: certainty equivalence; today’s decisions don’t depend on
future uncertainty
2nd order:

ĝ (2) (yt+1, ut , σ) = ȳ + 1
2gσσ + gy ŷt−1 + guut

+ 1
2 (gyy (ŷt−1 ⊗ ŷt−1) + guu (ut ⊗ ut))

+ gyu (ŷt−1 ⊗ ut)

Risk premium is a constant: 1
2gσσ
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Breaking certainty equivalence (2/2)

3rd order:

ĝ (3) (yt+1, ut , σ) = ȳ + 1
2gσσ + 1

6gσσσ + 1
2gσσy ŷt−1 + 1

2gσσuut

+ gy ŷt−1 + guut + . . .

Risk premium is linear in the state variables:

1
2gσσ + 1

6gσσσ + 1
2gσσy ŷt−1 + 1

2gσσuut
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The cost of local approximations

1 High order approximations are accurate around the steady state, and
more so than lower order approximations

2 But can be totally wrong far from the steady state (and may be more
so than lower order approximations)

3 Error of approximation of a solution ĝ , at a given point of the state
space (yt−1, ut):

E (yt−1, ut) =
Et f (ĝ (ĝ (yt−1, ut , σ) , ut+1, σ) , ĝ (yt−1, ut , σ) , yt−1, ut)

4 Necessity for pruning
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Approximation of occasionally binding constraints with
penalty functions
The investment positivity constraint is translated into a penalty on the
welfare:

max
{ct+j ,`t+j ,kt+j}∞j=0

∞∑
j=0

βju(ct+j , `t+j) + h · log(it+j)

s.t.

yt = ct + it
yt = At f (kt−1, `t)

kt = it + (1− δ)kt−1

At = A?eat

at = ρ at−1 + εt

where the technology (f ) and the preferences (u) are as before, and h
governs the strength of the penalty (barrier parameter)
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Thanks for your attention!

Questions?

cba Copyright © 2015-2017 Dynare Team
Licence: Creative Commons Attribution-ShareAlike 4.0
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