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Introduction

@ Perfect foresight = agents perfectly anticipate all future shocks
@ Concretely, at period 1:
» agents learn the value of all future shocks;
> since there is shared knowledge of the model and of future shocks,
agents can compute their optimal plans for all future periods;
» optimal plans are not adjusted in periods 2 and later
= the model behaves as if it was deterministic.
@ Cost of this approach: the effect of future uncertainty is not taken

into account (e.g. no precautionary motive)

@ Advantage: numerical solution can be computed exactly (up to
rounding errors), contrarily to perturbation or global solution methods
for rational expectations models

In particular, nonlinearities fully taken into account (e.g. occasionally
binding constraints)
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Outline

@ Presentation of the problem

© Solution techniques

© Shocks: temporary/permanent, unexpected/pre-announced
0 Occasionally binding constraints

© More unexpected shocks, extended path

@ Dealing with nonlinearities using higher order approximation of
stochastic models
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Outline

@ Presentation of the problem
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The (deterministic) neoclassical growth model

00 Cl—a
max i fa e S—
{ee )22, -1 1—0

s.t.

Ct + kt = Atk?_l + (1 — (5)kt_]_
First order conditions:
o e (oeenkt ™ +1-0)
Ct —+ kt = Atkt_?[_l —+ (1 — 6)kt_]_

r_ (1—5(1_— 6))“
BaA

¢ = Ak® — 6k
Note the absence of stochastic elements!

No expectancy term, no probability distribution
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Dynare code (1/3)

rcb_basic.mod

var c k;
varexo A;
parameters alpha beta gamma delta;

alpha=0.5;
beta=0.95;
gamma=0.5;
delta=0.02;

model;
c + k = Axk(-1)"alpha + (1-delta)*k(-1);
c”(-gamma) = betaxc(+1)” (-gamma)* (alpha*A(+1)*k~ (alpha-1) +
1 - delta);
end;
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Dynare code (2/3)

rcb_basic.mod

// Steady state (analytically solved)

initval;

A =1;

k = ((1-beta*x(1-delta))/(beta*alphax*A))~(1/(alpha-1));
c = AxkTalpha-deltaxk;

end;

// Check that this is indeed the steady state
steady;
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Dynare code (3/3)

rcb_basic.mod

// Declare a positive technological shock in period 1
shocks;

var A;

periods 1;

values 1.2;

end;

// Prepare the deterministic simulation over 100 periods
perfect_foresight_setup(periods=100);

// Perform the simulation
perfect_foresight_solver;

// Display the path of consumption
rplot c;

Sébastien Villemot (CEPREMAP) Deterministic Models June 12, 2018

8 /72



Simulated consumption
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The general problem

Deterministic, perfect foresight, case:

f(yet1, Yo, ye—1,ut) = 0

y : vector of endogenous variables

u : vector of exogenous shocks

Identification rule: as many endogenous (y) as equations (f)
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Return to the neoclassical growth model

_ [ &
.yt_ kt

Ut:At

&7 — B (aAt+1kf‘_1 +1- 5) )

f 9 9 - 7u =
(Y1, Ve, Vi1, Ut) ( Ct + ke — Arkf 1 + (1 — ) ke
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What if more than one lead or one lag?

@ A model with more than one lead or lag can be transformed in the
form with one lead and one lag using auxiliary variables

@ Transformation done automatically by Dynare
@ For example, if there is a variable with two leads x;2:
> create a new auxiliary variable a
> replace all occurrences of x;12 by a1
» add a new equation: a; = x¢41
@ Symmetric process for variables with more than one lag
e With future uncertainty, the transformation is more elaborate (but

still possible) on variables with leads
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Steady state

A steady state, y, for the model satisfies

f(7,7,7,8) =0

Note that a steady state is conditional to:

» The steady state values of exogenous variables u
» The value of parameters (implicit in the above definition)

Even for a given set of exogenous and parameter values, some
(nonlinear) models have several steady states

The steady state is computed by Dynare with the steady command

That command internally uses a nonlinear solver
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A two-boundary value problem

@ Stacked system for a perfect foresight simulation over T periods:

f(}/Z,YLYOa Ul) =0
f(Y3,Y2aY1a U2) =0

fyre1,y1,y7-1,uT) =0
for yo and y741 given.

e Compact representation:
F(Y)=0

/
where Y =| yi y5 ... y; }
and yo, Y741, U1...uT are implicit
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Solution of perfect foresight models

@ This technique numerically computes trajectories for given shocks
over a finite number of periods

@ No possibility of computing a recursive policy function (as with
perturbation methods), because future shock paths are state
variables, and those are infinite-dimensional objects

@ However, it is possible to approximate the asymptotic return to
equilibrium with y7,.1 =y and a large enough T

@ Resolution uses a Newton-type method on the stacked system
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Outline

© Solution techniques
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The Newton method (unidimensional)
y

|
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0
Sébastien Villemot (CEPREMAP)

Deterministic Models

m]

Funktion
Tangente



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

|
X
Funktion
e S S Tangente
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0 o =
Sébastien Villemot (CEPREMAP) Deterministic Models



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

Sx)
|
X
Funktion
o s Tangente
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0 o &5 =
Sébastien Villemot (CEPREMAP) Deterministic Models



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

Sx)
i » X
X
Funktion
f N S S Tangente
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0 o &5 =
Sébastien Villemot (CEPREMAP) Deterministic Models



http://creativecommons.org/licenses/by-sa/3.0/

y

A

The Newton method (unidimensional)

fx)
T
X, X
- o)
J'x)

Sébastien Villemot (CEPREMAP)

I
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

Deterministic Models

m]

Funktion
Tangente



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

|
X, Xy
Funktion
{ |- I Tangente
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0 o =
Sébastien Villemot (CEPREMAP) Deterministic Models



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

S (xs)
|
Xz Xy
Funktion
f N Y S Tangente
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0 o =
Sébastien Villemot (CEPREMAP) Deterministic Models



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

|
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0
Sébastien Villemot (CEPREMAP)

Deterministic Models

m]

Tangente

Funktion



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

f
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0
Sébastien Villemot (CEPREMAP)

Deterministic Models

Funktion
Tangente

m]



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

f
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0
Sébastien Villemot (CEPREMAP)

Deterministic Models

m]

Funktion
Tangente



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

f(x)

f
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0
Sébastien Villemot (CEPREMAP)

Deterministic Models

Funktion
Tangente

m]



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

f
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0
Sébastien Villemot (CEPREMAP)

Deterministic Models

Funktion
Tangente

m]



http://creativecommons.org/licenses/by-sa/3.0/

The Newton method (unidimensional)
y
A
X3
|
Sfx) Y

» X
i f

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

Sébastien Villemot (CEPREMAP)

Deterministic Models

Funktion
Tangente
&

m]



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

[
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0
Sébastien Villemot (CEPREMAP)

Deterministic Models

m]

Funktion
Tangente



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

f
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0
Sébastien Villemot (CEPREMAP)

Deterministic Models

m]

Funktion
Tangente



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

-
/
' Xy
|
X,
f{ 4,} Xy
Funktion
| ! ! | LT Tangente
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0 o =
Sébastien Villemot (CEPREMAP) Deterministic Models



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

//
X3 Xy
|
Sx) Xs X, Y,
Xo=x, - S (xs)
1'(x)

f
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0
Sébastien Villemot (CEPREMAP)

Deterministic Models

Funktion
Tangente

m]



http://creativecommons.org/licenses/by-sa/3.0/

A

The Newton method (unidimensional)
y

X3 Xy
s X
Funktion
| ! | 1 1] Tangente
Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0 o &5 =
Sébastien Villemot (CEPREMAP) Deterministic Models



http://creativecommons.org/licenses/by-sa/3.0/

The Newton method (multidimensional)

e Start from an initial guess Y(©)

o Iterate. Updated solutions Y (k*1) are obtained by solving a linear
system:

OF
Dy 4 [ 22| (ykt)) _ y(R)) =
F(Y H[ay} (Y Y )_o

@ Terminal condition:
IYED - v < ey

or
IF(YU| < ef

@ Convergence may never happen if function is ill-behaved or initial
guess Y(©) too far from a solution
= to avoid an infinite loop, abort after a given number of iterations
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Controlling the Newton algorithm from Dynare

The following options to the perfect_foresight_solver can be used to
control the Newton algorithm:
maxit Maximum number of iterations before aborting (default: 50)
tolf Convergence criterion based on function value (e¢) (default:
107°)
tolx Convergence criterion based on change in the function
argument (ey) (default: 107°)
stack_solve_algo select between the different flavors of Newton
algorithms (see thereafter)
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A practical difficulty

The Jacobian can be very large: for a simulation over T periods of a
model with n endogenous variables, it is a matrix of dimension nT x nT.

Three alternative ways of dealing with the large problem size:

@ Exploit the particular structure of the Jacobian using a relaxation
technique developped by Laffargue, Boucekkine and Juillard (was the
default method in Dynare < 4.2)

e Handle the Jacobian as one large, sparse, matrix (now the default
method)

@ Block decomposition, which is a divide-and-conquer method,
implemented by Mihoubi

Sébastien Villemot (CEPREMAP) Deterministic Models June 12, 2018 20 / 72



Shape of the Jacobian

B G
A B G
aF " . ’ " . " .
a—y - At Bt Ct
Ar1 Bri Cra
AT Br
where
of
A= —— _
s Bye1 (YS+17)/5’)/5 1)
of
Bs = a_yt(YS—l—lays:)/s—l)
of
G = m()/s+la)/57}/sfl)
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Relaxation (1/5)

The idea is to triangularize the stacked system:

Bi G f(y2, y1. Yo, t1)
A B G f(y3, y2, 1, U2)
AY = —
Ar_1 Broi Cr f(yr,yr—1,y7,UT-1)
At Br f(yT+1, YT, Y71, UT)

Sébastien Villemot (CEPREMAP) Deterministic Models June 12, 2018 22 /72



Relaxation (2/5)

First period is special:

/ Dq di

B, —ADy G f(y3, 2, y1, 2) + Asds
As B G f(Yary3, y2, u3)

. . AY = — .
Ar-1 Broi Cr fyr,yT—1,y7,UT-1)
AT Br f(yr+1,¥7,¥T-1,UT)

where
o D) =BG

o d]_ = B]__lf(.y2ayla.y07 U]_)
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Relaxation (3/5)

Normal iteration:

| Dy di
/ D> d
Bs —AsD, G f(va, y3, y2, u3) + Asdz
Ar_1 Broi Cr flyr,yT—1,y7,UT-1)
At Br f(yr41, ¥y, yT-1,UT)
where

e D> = (32 — A2D1)_1C2
o dr = (By — AaD1) M (y3, 2, y1, t) + Azdh)
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Relaxation (4/5)

Final iteration:

I D; d1
I D, do
I Ds ds
, AY = —
I Dy dr_1
/ dr

where

dr = (Bt — ArDr_1) Y (f(yr+1, ¥y y7-1, UT) + ATdT_1)
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Relaxation (5/5)

@ The system is then solved by backward iteration:

k+1 k
yrt =yt —dr

Ve = y5 —dro1 = Droa(yett — )

it =yf —di — Di(yf Tt — )

@ No need to ever store the whole Jacobian: only the Ds and ds have to
be stored

@ This technique is memory efficient (was the default method in Dynare
< 4.2 for this reason)

o Still available as option stack_solve_algo=6 of
perfect_foresight_solver command
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Sparse matrices (1/3)

@ Consider the following matrix with most elements equal to zero:

0 0 25
A=1-3 0 O
0 0 O

@ Dense matrix storage (in column-major order) treats it as a
one-dimensional array:

[0,—3,0,0,0,0,2.5,0,0]

@ Sparse matrix storage:

» views it as a list of triplets (/,j, v) where (/,j) is a matrix coordinate
and v a non-zero value
» A would be stored as

{(2,1,-3),(1,3,2.5)}

Sébastien Villemot (CEPREMAP) Deterministic Models June 12, 2018 27 / 72



Sparse matrices (2/3)

@ In the general case, given an m x n matrix with k non-zero elements:

> dense matrix storage = 8mn bytes
> sparse matrix storage = 16k bytes
» sparse storage more memory-efficient as soon as k < mn/2

(assuming 32-bit integers and 64-bit floating point numbers)

@ In practice, sparse storage becomes interesting if k < mn/2, because
linear algebra algorithms are vectorized
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Sparse matrices (3/3)

The Jacobian of the deterministic problem is a sparse matrix:

» Lots of zero blocks
» The As, Bs and Cs usually are themselves sparse

e Family of optimized algorithms for sparse matrices (including matrix
inversion for our Newton algorithm)

@ Auvailable as native objects in MATLAB/Octave (see the sparse
command)

Works well for medium size deterministic models

@ Nowadays more efficient than relaxation, even though it does not
exploit the particular structure of the Jacobian
= now the default method in Dynare (stack_solve_algo=0)
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Block decomposition (1/3)

o ldea: apply a divide-and-conquer technique to model simulation

@ Principle: identify recursive and simultaneous blocks in the model
structure

e First block (prologue): equations that only involve variables
determined by previous equations; example: AR(1) processes

@ Last block (epilogue): pure output/reporting equations

@ In between: simultaneous blocks, that depend recursively on each
other

@ The identification of the blocks is performed through a matching
between variables and equations (normalization), then a reordering of
both
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Block decomposition (2/3)

Form of the reordered Jacobian (equations in lines, variables in columns)

exogenous shocks AR(1
prologue

simultaneous block 1 ﬁ

simultaneous block 2 -<

epilogue {
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Block decomposition (3/3)

Can provide a significant speed-up on large models
Implemented in Dynare by Ferhat Mihoubi

Available as option block to the model command

Bigger gains when used in conjunction with bytecode option
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Homotopy

@ Another divide-and-conquer method, but in the shocks dimension
@ Useful if shocks so large that convergence does not occur

o Idea: achieve convergence on smaller shock size, then use the result
as starting point for bigger shock size
@ Algorithm:
@ Starting point for simulation path: steady state at all ¢
@ ) < 0: scaling factor of shocks (simulation succeeds when A = 1)
@ s« 1: step size

© Try to compute simulation with shocks scaling factor equal to A + s
(using last successful computation as starting point)

* If success: A <~ A+ s. Stop if A = 1. Otherwise possibly increase s.
* If failure: diminish s.

@ Goto4
@ Can be combined with any deterministic solver

@ Used by default by perfect_foresight_solver (can be disabled
with option no_homotopy)
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Outline

© Shocks: temporary/permanent, unexpected/pre-announced
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Example: neoclassical growth model with investment

The social planner problem is as follows:
(e e}

maxXx EtZﬂju(ct+j,€t+j)

{Ct+j,ft+j7kt+j}}):00 j=0
s.t.
Yt = Ct + it
yt fry Atf(kt—laét)
ke = ie + (1 — 0)ke—1
At _ A*eat

ar=pat-1+Es

where €; is an exogenous shock.
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Specifications

e Utility function:

(01— )=o)
1-—71

I.I(Ct7 et) =

@ Production function:

&=

Flke1,te) = (akiy + (1= )t
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First order conditions

@ Euler equation:

uc(ce, be) = BE: {Uc(ct+1, £t+1)(At+1fk(kt,€t+1) +1-— 5)]
@ Arbitrage between consumption and leisure:

U@(Ct,ft)
Uc(Ct,gt)

@ Resource constraint:

+ Atfo(ke—1,0t) =0

Ct + kt = Atf(kt—laet) + (1 — 5)kt_1
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Dynare code (1/3)

var k, y, L, c, A, a;
varexo epsilon;
parameters beta, theta, tau, alpha, psi, delta, rho, Astar;

beta = 0.9900;
theta = 0.3570;
tau = 2.0000;
alpha =  0.4500;
psi = -0.1000;
delta = 0.0200;
rho = 0.8000;
Astar = 1.0000;
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Dynare code (2/3)

model;
a = rho*a(-1) + epsilon;
A = Astarxexp(a);
y = Ax(alphaxk(-1) psi+(l-alpha)*L psi)~(1/psi);
k = y-c + (1-delta)*k(-1);
(1-theta) /theta*c/(1-L) - (1-alpha)*(y/L)~(1-psi);
(c"thetax(1-L) "~ (1-theta)) ~(1-tau)/c =
beta*(c(+1) “theta*x(1-L(+1))~(1-theta))  (1-tau)/c(+1)
* (alphax*(y(+1) /k) ~(1-psi)+1-delta);
end;
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Dynare code (3/3)

steady_state_model;

a = epsilon/(1-rho);

A = Astarxexp(a);

Output_per_unit_of_Capital=((1/beta-1+delta)/alpha)~(1/(1-psi));

Consumption_per_unit_of_Capital=0Output_per_unit_of_Capital-delta;

Labour_per_unit_of_Capital=(((Output_per_unit_of_Capital/A) “psi-alpha)
/(1-alpha))~(1/psi);

Output_per_unit_of_Labour=0utput_per_unit_of_Capital/Labour_per_unit_of_Capital;

Consumption_per_unit_of_Labour=Consumption_per_unit_of_Capital

/Labour_per_unit_of_Capital;

% Compute steady state of the endogenous variables.

L=1/(1+Consumption_per_unit_of_Labour/((1-alpha)*theta/(1-theta)
*0utput_per_unit_of_Labour~(1-psi)));

c=Consumption_per_unit_of_Labourx*L;

k=L/Labour_per_unit_of_Capital;

y=0utput_per_unit_of_Capitalx*k;

end;
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Scenario 1: Return to equilibrium
Return to equilibrium starting from kg = 0.5k.
Fragment from rbc_det1.mod

steady;

ik = varlist_indices(’k’,M_.endo_names);
kstar = oo_.steady_state(ik);

histval;
k(0) = kstar/2;
end;

perfect_foresight_setup(periods=300);
perfect_foresight_solver;

Sébastien Villemot (CEPREMAP) Deterministic Models June 12, 2018 41 /72



Scenario 2: A temporary shock to TFP

@ The economy starts from the steady state

@ There is an unexpected negative shock at the beginning of period 1:
€1 = —-0.1

Fragment from rbc_det2.mod
steady;

shocks;

var epsilon;
periods 1;
values -0.1;
end;

perfect_foresight_setup(periods=300);
perfect_foresight_solver;
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Scenario 3: Pre-announced favorable shocks in the future

@ The economy starts from the steady state

@ There is a sequence of positive shocks to A;: 4% in period 5 and an
additional 1% during the 4 following periods

Fragment from rbc_det3.mod
steady;

shocks;

var epsilon;

periods 4, 5:8;

values 0.04, 0.01;
end;

perfect_foresight_setup(periods=300);
perfect_foresight_solver;
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Scenario 4: A permanent shock

@ The economy starts from the initial steady state (ag = 0)
@ In period 1, TFP increases by 5% permanently (and this was
unexpected)

Fragment from rbc_det4.mod
initval;

epsilon
end;

0;

steady;

endval;
epsilon
end;

(1-rho)*1log(1.05);

steady;
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Scenario 5: A pre-announced permanent shock

@ The economy starts from the initial steady state (ap = 0)
@ In period 6, TFP increases by 5% permanently

@ A shocks block is used to maintain TFP at its initial level during
periods 1-5

Fragment from rbc_det5.mod

// Same initval and endval blocks as in Scenario 4

shocks;

var epsilon;
periods 1:5;
values O;
end;
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Summary of commands

initval for the initial steady state (followed by steady)
endval for the terminal steady state (followed by steady)
histval for initial or terminal conditions out of steady state
shocks for shocks along the simulation path
perfect_foresight_setup prepare the simulation
perfect_foresight_solver compute the simulation

simul do both operations at the same time (deprecated syntax,
alias for perfect_foresight_setup +
perfect_foresight_solver)
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Under the hood

@ The paths for exogenous and endogenous variables are stored in two
MATLAB/Octave matrices:

oo_.endo_simul
00_.exo_simul’

( Yo vi - Y7 Y141 )
( X u ... ur X )

@ perfect_foresight_setup initializes those matrices, given the
shocks, initval, endval and histval blocks
> ¥0, ¥7+1 and uy ... uT are the constraints of the problem
> yi...yT are the initial guess for the Newton algorithm

@ perfect_foresight_solver replaces y1...y7 in oo_.endo_simul
by the solution
o Notes:

> for historical reasons, dates are in columns in oo_.endo_simul and in lines in
oo_.exo_simul, hence the transpose (’) above

> this is the setup for no lead and no lag on exogenous

> if one lead and/or one lag, up and/or ur,; would become relevant

> if more than one lead and/or lag, matrices would be larger
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Initial guess

!/ !/
The Newton algorithm needs an initial guess Y(®) = [yl(o) y-(,9) ].

What is Dynare using for this?
o By default, if there is no endval block, it is the steady state as
specified by initval (repeated for all simulations periods)

@ Or, if there is an endval block, then it is the final steady state
declared within this block

@ Possibility of customizing this default by manipulating
oo_.endo_simul after perfect_foresight_setup (but of course
before perfect_foresight_solver!)

o If homotopy is triggered, the initial guess of subsequent iterations is
the result of the previous iteration
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Alternative way of specifying terminal conditions

@ With the differentiate_forward_vars option of the model block,
Dynare will substitute forward variables using new auxiliary variables:
» Substitution: x;11 — X + a1
» New equation: a; = x¢y1 — Xt
@ If the terminal condition is a steady state, the new auxiliary variables
have obvious zero terminal condition
@ Useful when:
» the final steady state is hard to compute (this transformation actually
provides a way to find it)
» the model is very persistent and takes time to go back to steady state
(this transformation avoids a kink at the end of the simulation if T is
not large enough)
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Outline

@ Occasionally binding constraints
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Zero nominal interest rate lower bound

@ Implemented by writing the law of motion under the following form in
Dynare:

iy = max {0, (1= pi)i* + piir—1 + pr(me — 7°) + 6’;}

@ Warning: this form will be accepted in a stochastic model, but the
constraint will not be enforced in that case!
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Irreversible investment

Same model as above, but the social planner is constrained to positive

investment paths:

Zﬁ u Ct+ja gt—l—])

{Ct+_/7zt+17kt+1}j =0 j=0

s.t.

ye=ce+ i

ye = Acf(ke—1,£r)
kt - it + (1 - 5)/(15_1
ir >0
At - A*eat
ar=par-1+et

where the technology (f) and the preferences (u) are as above.
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First order conditions

uc(ce, be) — pie = 5]Et[uc(ct+17£t+1) (Aty1fi(ke, Ley1) +1—9)
— pes1(1 = 9)]

uf(chgt)
uc(ce, lr)
C: + kt = Atf(kt_:[’gt) + (1 — (S)kt_]_

+ Atfi(ke—1,4:) =0

Slackness condition:
e =0 and it >0

or

pwe >0 and i =0

where p; > 0 is the Lagrange multiplier associated to the non-negativity

constraint for investment.
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Mixed complementarity problems

@ A mixed complementarity problem (MCP) is given by:
» function F(x): R" — R"
> lower bounds ¢; € RU {—occ}
» upper bounds u; € RU {+oc0}
@ A solution of the MCP is a vector x € R” such that for each
i € {1...n}, one of the following alternatives holds:
» (; < x; < uj and F,'(X):O
» x; ={; and Fi(x) >0
» x; = u; and Fi(x) <0
@ Notation:
(< x<ul F(x)

@ Solving a square system of nonlinear equations is a particular case
(with ¢; = —o0 and uj = 400 for all i)

@ Optimality problems with inequality constraints are naturally expressed
as MCPs (finite bounds are imposed on Lagrange multipliers)
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The irreversible investment model in Dynare

@ MCP solver triggered with option lmmcp of
perfect_foresight_solver

@ Slackness condition described by equation tag mcp

Fragment from rbcii.mod
(c"theta*(1-L)~(1-theta)) (1-tau)/c - mu =
betax((c(+1) “theta*(1-L(+1))~(1-theta)) ~(1-tau)/c(+1)
* (alphax* (y(+1)/k) " (1-psi)+1-delta)-mu(+1)*(1-delta));
[ mcp =i >0 ]
= 0;
perfect_foresight_setup(periods=400) ;
perfect_foresight_solver (lmmcp, maxit=200);
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e More unexpected shocks, extended path
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Simulating unexpected shocks

With a perfect foresight solver:
@ shocks are unexpected in period 1

@ but in subsequent periods they are anticipated

How to simulate an unexpected shock at a period t > 17
@ Do a perfect foresight simulation from periods 0 to T without the
shock
@ Do another perfect foresight simulation from periods t to T

> applying the shock in t,
» and using the results of the first simulation as initial condition

@ Combine the two simulations:

> use the first one for periods 1 to t — 1,
» and the second one for t to T
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A Dynare example (1/2)

Simulation of a scenario with:
@ Pre-announced (negative) shocks in periods 5 and 15

@ Unexpected (positive) shock in period 10

From rbc_unexpected.mod:

// Declare pre-announced shocks
shocks;

var epsilon;

periods 5, 15;

values -0.1, -0.1;

end;

perfect_foresight_setup(periods=300);
perfect_foresight_solver;
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A Dynare example (2/2)

// Declare unexpected shock (after first simulation!)
oo_.exo_simul(11, 1) = 0.1; // Period 10 has index 11!

// Strip first 9 periods and save them

saved_endo = oo_.endo_simul(:, 1:9); // Save periods 0 to 8
saved_exo = oo_.exo_simul(1:9, :);

oo_.endo_simul = oo_.endo_simul(:, 10:end); // Keep periods 9
oo_.exo_simul = oo_.exo_simul(10:end, :);

periods 291;
perfect_foresight_solver;

// Combine the two simulations
oo_.endo_simul = [ saved_endo oo_.endo_simul ];

oo_.exo_simul = [ saved_exo; oo_.exo_simul ];
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Consumption path
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Extended path (EP) algorithm

@ Generalization of the previous method, where unexpected shocks may
happen in all periods

o At every period, compute endogenous variables by running a
deterministic simulation with:

» the previous period as initial condition

> the steady state as terminal condition

» a random shock drawn for the current period
» but no shock in the future

@ Advantages:
» shocks are unexpected at every period
» nonlinearities fully taken into account

@ Inconvenient: solution under certainty equivalence (Jensen inequality
is violated)

@ Method introduced by Fair and Taylor (1983)

@ Implemented under the command extended_path (with option
order = 0, which is the default)
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Extended path in Dynare

From rbc_ep.mod:

// Declare shocks as in a stochastic setup
shocks;

var epsilon;

stderr 0.02;

end;

extended_path(periods=300);
// Plot 20 first periods of consumption

ic = varlist_indices(’c’,M_.endo_names) ;
plot(oo_.endo_simul(ic, 1:21));
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k-step ahead extended path

Accuracy can be improved by computing conditional expectation by
quadrature, computing next period endogenous variables with the
previous algorithm

@ Approximation: at date t, agents assume that there will be no more
shocks after period t + k (hence k measures the degree of future
uncertainty taken into account)

o If k =1: one-step ahead EP; no more certainty equivalence

@ By recurrence, one can compute a k-step ahead EP: even more
uncertainty taken into account

o Difficulty: computing complexity grows exponentially with k

@ k-step ahead EP triggered with option order = k of
extended_path command
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Local approximation of stochastic models

The general problem:

Eef(ye+1, e, ye—1,ut) = 0
y : vector of endogenous variables

u : vector of exogenous shocks

with:
E(Ut) =0
/
E(uruy) = X4
/
E(utuy) = 0 fort#s
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What is a solution to this problem?

@ A solution is a policy function of the form:

Yt = g()’t—h UtaU)

where o is the stochastic scale of the problem and:

Ut41 = 0 Et41

@ The policy function must satisfy:

Etf(g (g (yt—lv Ut,O') ; ut+170) 7g(yt—17 Ut,O') y Yt—1, ul’) =0
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LLocal approximations

g(l) (yl'—i-la Ut, U) = )_/ + gyyt—l + gult

5(2) _-o. 1 .
&Y (Yeq1 U, 0) =y + 5800+ &y Ji-1+ Gule

1 . .
+ > (&yy (Vt—1 ® Jr—1) + guu (U ® uy))
+ 8yu ()A/t—l &® Ut)
~(3) _ 1 1 1 R 1
g (}/t+1, Uz, U) =y+ iga'a + égaoa + §gagy)/t71 + Egaauut
+ gy)A/t—l + guur + ...
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Breaking certainty equivalence (1/2)

The combination of future uncertainty (future shocks) and nonlinear
relationships makes for precautionary motives or risk premia.

@ 15t order: certainty equivalence; today's decisions don't depend on
future uncertainty

e 2" order:
5(2) _-. 1 o
g% (Yeq1,u,0) =y + 5800 + 8yJe-1 + Gule
1 N N
+ 2 (8yy (V11 ® Je—1) + &uu (ur ® ue))

+ 8yu (}A/t—l ® Ut)

Risk premium is a constant: %ggg
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Breaking certainty equivalence (2/2)

e 3 order:

3) o1 1 11
g (_Vt-i-la Uz, U) =y+ Egaa + ggaao + Ego'ayyt—l + Egaauut
+ gy Vi1 +gulr + ...

Risk premium is linear in the state variables:

1 1 1 R 1
§gao + 6gaao + igaay}/t—l + Egaauut
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The cost of local approximations

@ High order approximations are accurate around the steady state, and
more so than lower order approximations

@ But can be totally wrong far from the steady state (and may be more
so than lower order approximations)

© Error of approximation of a solution g, at a given point of the state
space (yi—1, Ut):

& ()/t—17 Ut) =
E:f (é’ (@ (yf—la Ut, U) y Ut+1, U) & (.yt—la ug, U) y Yt—1, Ut)

@ Necessity for pruning
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Approximation of occasionally binding constraints with
penalty functions

The investment positivity constraint is translated into a penalty on the
welfare:

o0
max Z BFu(ceqj, leqj) + h-log(iet)
{etrjileri ket =0

s.t.

ye=cCt+ it
vt = Atf(ke—1,0t)
ke =i + (1 — §)ke—1
A = Afe™
ar=par-1+et

where the technology (f) and the preferences (u) are as before, and h

governs the strength of the penalty (barrier parameter)
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Thanks for your attention!

Questions?

@@ Copyright © 2015-2018 Dynare Team
License: Creative Commons Attribution-ShareAlike 4.0
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