
The Dynare Macro-processor
Dynare Summer School 2017

Sébastien Villemot

June 13, 2017

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 1 / 32

Outline

1 Overview

2 Syntax

3 Typical usages

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 2 / 32

Outline

1 Overview

2 Syntax

3 Typical usages

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 3 / 32

Motivation

The Dynare language (used in MOD files) is well suited for many
economic models
However, as such, it lacks some useful features, such as:

I a loop mechanism for automatically repeating similar blocks of
equations (such as in multi-country models)

I an operator for indexed sums or products inside equations
I a mechanism for splitting large MOD files in smaller modular files
I the possibility of conditionally including some equations or some

runtime commands
The Dynare Macro-language was specifically designed to address
these issues
Being flexible and fairly general, it can also be helpful in other
situations

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 4 / 32

Design of the macro-language

The Dynare Macro-language provides a new set of
macro-commands which can be inserted inside MOD files
Language features include:

I file inclusion
I loops (for structure)
I conditional inclusion (if/else structures)
I expression substitution

The macro-processor transforms a MOD file with macro-commands
into a MOD file without macro-commands (doing text
expansions/inclusions) and then feeds it to the Dynare parser
The key point to understand is that the macro-processor only does
text substitution (like the C preprocessor or the PHP language)

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 5 / 32

Design of Dynare

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 6 / 32

Outline

1 Overview

2 Syntax

3 Typical usages

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 7 / 32

Macro Directives

Directives begin with an at-sign followed by a pound sign (@#)
A directive produces no output, but gives instructions to the
macro-processor
Main directives are:

I file inclusion: @#include
I definition a variable of the macro-processor: @#define
I conditional statements (@#if/@#ifdef/@#ifndef/@#else/@#endif)
I loop statements (@#for/@#endfor)

In most cases, directives occupy exactly one line of text. In case of
need, two anti-slashes (\\) at the end of the line indicates that the
directive is continued on the next line.

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 8 / 32

Variables

The macro processor maintains its own list of variables (distinct of
model variables and of MATLAB/Octave variables)
Macro-variables can be of four types:

I integer
I character string (declared between double quotes)
I array of integers
I array of strings

No boolean type:
I false is represented by integer zero
I true is any non-null integer

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 9 / 32

Macro-expressions (1/2)

It is possible to construct macro-expressions, using standard operators.

Operators on integers
arithmetic operators: + - * /

comparison operators: < > <= >= == !=

logical operators: && || !

integer ranges: 1:4 is equivalent to integer array [1,2,3,4]

Operators on character strings
comparison operators: == !=

concatenation: +

extraction of substrings: if s is a string, then one can write s[3] or
s[4:6]

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 10 / 32

Macro-expressions (2/2)

Operators on arrays
dereferencing: if v is an array, then v[2] is its 2nd element
concatenation: +

difference -: returns the first operand from which the elements of the
second operand have been removed
extraction of sub-arrays: e.g. v[4:6]

testing membership of an array: in operator
(example: "b" in ["a", "b", "c"] returns 1)

Macro-expressions can be used at two places:
inside macro directives, directly
in the body of the MOD file, between an at-sign and curly braces (like
@{expr}): the macro processor will substitute the expression with its
value

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 11 / 32

Define directive

The value of a macro-variable can be defined with the @#define directive.

Syntax
@#define variable_name = expression

Examples
@#define x = 5 // Integer
@#define y = "US" // String
@#define v = [1, 2, 4] // Integer array
@#define w = ["US", "EA"] // String array
@#define z = 3 + v[2] // Equals 5
@#define t = ("US" in w) // Equals 1 (true)

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 12 / 32

Expression substitution
Dummy example

Before macro-processing
@#define x = ["B", "C"]
@#define i = 2

model;
A = @{x[i]};

end;

After macro-processing
model;

A = C;
end;

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 13 / 32

Inclusion directive (1/2)

This directive simply includes the content of another file at the place
where it is inserted.

Syntax
@#include "filename"

Example
@#include "modelcomponent.mod"

Exactly equivalent to a copy/paste of the content of the included file
Note that it is possible to nest includes (i.e. to include a file from an
included file)

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 14 / 32

Inclusion directive (2/2)

The filename can be given by a macro-variable (useful in loops):

Example with variable
@#define fname = "modelcomponent.mod"
@#include fname

Files to include are searched for in current directory. Other directories
can be added with @includepath directive, -I command line option
or [paths] section in config file.

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 15 / 32

Loop directive
Syntax
@#for variable_name in array_expr

loop_body
@#endfor

Example: before macro-processing
model;
@#for country in ["home", "foreign"]

GDP_@{country} = A * K_@{country}^a * L_@{country}^(1-a);
@#endfor
end;

Example: after macro-processing
model;

GDP_home = A * K_home^a * L_home^(1-a);
GDP_foreign = A * K_foreign^a * L_foreign^(1-a);

end;

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 16 / 32

Conditional inclusion directives (1/2)

Syntax 1
@#if integer_expr

body included if expr != 0
@#endif

Syntax 2
@#if integer_expr

body included if expr != 0
@#else

body included if expr == 0
@#endif

Example: alternative monetary policy rules
@#define linear_mon_pol = 0 // or 1
...
model;
@#if linear_mon_pol

i = w*i(-1) + (1-w)*i_ss + w2*(pie-piestar);
@#else

i = i(-1)^w * i_ss^(1-w) * (pie/piestar)^w2;
@#endif
...
end;

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 17 / 32

Conditional inclusion directives (2/2)

Syntax 1
@#ifdef variable_name

body included if variable
defined
@#endif

Syntax 2
@#ifdef variable_name

body included if variable
defined
@#else

body included if variable not
defined
@#endif

There is also @#ifndef, which is the opposite of @#ifdef (i.e. it tests
whether a variable is not defined).

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 18 / 32

Echo and error directives

The echo directive will simply display a message on standard output
The error directive will display the message and make Dynare stop
(only makes sense inside a conditional inclusion directive)

Syntax
@#echo string_expr
@#error string_expr

Examples
@#echo "Information message."
@#error "Error message!"

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 19 / 32

Saving the macro-expanded MOD file

For debugging or learning purposes, it is possible to save the output
of the macro-processor
This output is a valid MOD file, obtained after processing the
macro-commands of the original MOD file
Just add the savemacro option on the Dynare command line (after
the name of your MOD file)
If MOD file is filename.mod, then the macro-expanded version will
be saved in filename-macroexp.mod

You can specify the filename for the macro-expanded version with the
syntax savemacro=mymacroexp.mod

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 20 / 32

Outline

1 Overview

2 Syntax

3 Typical usages

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 21 / 32

Modularization

The @#include directive can be used to split MOD files into several
modular components
Example setup:
modeldesc.mod: contains variable declarations, model equations and

shocks declarations
simulate.mod: includes modeldesc.mod, calibrates parameters and

runs stochastic simulations
estim.mod: includes modeldesc.mod, declares priors on parameters

and runs bayesian estimation
Dynare can be called on simulate.mod and estim.mod

But it makes no sense to run it on modeldesc.mod

Advantage: no need to manually copy/paste the whole model (at the
beginning) or changes to the model (during development)

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 22 / 32

Indexed sums or products
Example: moving average

Before macro-processing
@#define window = 2

var x MA_x;
...
model;
...
MA_x = 1/@{2*window+1}*(
@#for i in -window:window

+x(@{i})
@#endfor

);
...
end;

After macro-processing
var x MA_x;
...
model;
...
MA_x = 1/5*(

+x(-2)
+x(-1)
+x(0)
+x(1)
+x(2)

);
...
end;

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 23 / 32

Multi-country models
MOD file skeleton example

@#define countries = ["US", "EA", "AS", "JP", "RC"]
@#define nth_co = "US"

@#for co in countries
var Y_@{co} K_@{co} L_@{co} i_@{co} E_@{co} ...;
parameters a_@{co} ...;
varexo ...;
@#endfor

model;
@#for co in countries
Y_@{co} = K_@{co}^a_@{co} * L_@{co}^(1-a_@{co});

...
@# if co != nth_co
(1+i_@{co}) = (1+i_@{nth_co}) * E_@{co}(+1) / E_@{co}; // UIP relation

@# else
E_@{co} = 1;

@# endif
@#endfor
end;

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 24 / 32

Endogeneizing parameters (1/4)

When doing the steady-state calibration of the model, it may be
useful to consider a parameter as an endogenous (and vice-versa)
Example:

y =
(
α

1
ξ `

1− 1
ξ + (1 − α)

1
ξ k1− 1

ξ

) ξ
ξ−1

lab_rat = w`
py

In the model, α is a (share) parameter, and lab_rat is an endogenous
variable
We observe that:

I calibrating α is not straigthforward!
I on the contrary, we have real world data for lab_rat
I it is clear that these two variables are economically linked

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 25 / 32

Endogeneizing parameters (2/4)

Therefore, when computing the steady state:
I we make α an endogenous variable and lab_rat a parameter
I we impose an economically relevant value for lab_rat
I the solution algorithm deduces the implied value for α

We call this method “variable flipping”

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 26 / 32

Endogeneizing parameters (3/4)
Example implementation

File modeqs.mod:
I contains variable declarations and model equations
I For declaration of alpha and lab_rat:

@#if steady
var alpha;
parameter lab_rat;

@#else
parameter alpha;
var lab_rat;

@#endif

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 27 / 32

Endogeneizing parameters (4/4)
Example implementation

File steadystate.mod:
I begins with @#define steady = 1
I then with @#include "modeqs.mod"
I initializes parameters (including lab_rat, excluding alpha)
I computes steady state (using guess values for endogenous, including

alpha)
I saves values of parameters and endogenous at steady-state in a file,

using the save_params_and_steady_state command
File simulate.mod:

I begins with @#define steady = 0
I then with @#include "modeqs.mod"
I loads values of parameters and endogenous at steady-state from file,

using the load_params_and_steady_state command
I computes simulations

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 28 / 32

MATLAB/Octave loops vs macro-processor loops (1/3)

Suppose you have a model with a parameter ρ, and you want to make
simulations for three values: ρ = 0.8, 0.9, 1. There are several ways of
doing this:

With a MATLAB/Octave loop
rhos = [0.8, 0.9, 1];
for i = 1:length(rhos)

rho = rhos(i);
stoch_simul(order=1);

end

The loop is not unrolled
MATLAB/Octave manages the iterations
Interesting when there are a lot of iterations

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 29 / 32

MATLAB/Octave loops vs macro-processor loops (2/3)

With a macro-processor loop (case 1)
rhos = [0.8, 0.9, 1];
@#for i in 1:3

rho = rhos(@{i});
stoch_simul(order=1);

@#endfor

Very similar to previous example
Loop is unrolled
Dynare macro-processor manages the loop index but not the data
array (rhos)

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 30 / 32

MATLAB/Octave loops vs macro-processor loops (3/3)

With a macro-processor loop (case 2)
@#for rho_val in ["0.8", "0.9", "1"]

rho = @{rho_val};
stoch_simul(order=1);

@#endfor

Advantage: shorter syntax, since list of values directly given in the
loop construct
Note that values are given as character strings (the macro-processor
does not know floating point values)
Inconvenient: can not reuse an array stored in a MATLAB/Octave
variable

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 31 / 32

Thanks for your attention!

Questions?

cba Copyright © 2008–2017 Dynare Team
Licence: Creative Commons Attribution-ShareAlike 4.0

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 32 / 32

http://creativecommons.org/licenses/by-sa/4.0/

	Overview
	Syntax
	Typical usages

