The Dynare Macro-processor
Dynare Summer School 2017

Sébastien Villemot

ofce

June 13, 2017

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 1/32

Outline

© Overview

© Syntax

e Typical usages

Sébastien Villemot (OFCE)

The Dynare Macro-processor

Outline

© Overview

Sébastien Villemot (OFCE)

The Dynare Macro-processor

Motivation

e The Dynare language (used in MOD files) is well suited for many
economic models
@ However, as such, it lacks some useful features, such as:
» a loop mechanism for automatically repeating similar blocks of
equations (such as in multi-country models)
» an operator for indexed sums or products inside equations
» a mechanism for splitting large MOD files in smaller modular files
» the possibility of conditionally including some equations or some
runtime commands
@ The Dynare Macro-language was specifically designed to address
these issues

@ Being flexible and fairly general, it can also be helpful in other
situations

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 4 /32

Design of the macro-language

@ The Dynare Macro-language provides a new set of
macro-commands which can be inserted inside MOD files
o Language features include:
» file inclusion
» loops (for structure)
» conditional inclusion (if/else structures)
> expression substitution
@ The macro-processor transforms a MOD file with macro-commands
into a MOD file without macro-commands (doing text
expansions/inclusions) and then feeds it to the Dynare parser

@ The key point to understand is that the macro-processor only does
text substitution (like the C preprocessor or the PHP language)

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 5/32

Design of Dynare

MOD file
with macro
commands

:Dynare preprocessor

Sébastien Villemot (OFCE)

Macro MOD file Parsgr,
P without macro Analytical
rocessor commands derivator...

Matlab files
representing
the model

Dynare
Matlab routines

The Dynare Macro-processor June 13, 2017

6/ 32

Outline

© Syntax

Sébastien Villemot (OFCE)

The Dynare Macro-processor

Macro Directives

@ Directives begin with an at-sign followed by a pound sign (@#)

@ A directive produces no output, but gives instructions to the
macro-processor
o Main directives are:
» file inclusion: @#include
» definition a variable of the macro-processor: @#define
» conditional statements (0#if/@#ifdef/@#ifndef/Q@#else/C#endif)
> loop statements (@#for/@#endfor)
@ In most cases, directives occupy exactly one line of text. In case of
need, two anti-slashes (\\) at the end of the line indicates that the
directive is continued on the next line.

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 8 /32

Variables

@ The macro processor maintains its own list of variables (distinct of

model variables and of MATLAB/Octave variables)
@ Macro-variables can be of four types:

>

>
>
>

integer

character string (declared between double quotes)
array of integers

array of strings

@ No boolean type:

>

>

false is represented by integer zero
true is any non-null integer

Sébastien Villemot (OFCE) The Dynare Macro-processor

June 13, 2017

9/32

Macro-expressions (1/2)

It is possible to construct macro-expressions, using standard operators.

Operators on integers
@ arithmetic operators: + - * /
@ comparison operators: < > <= >= == |I=
@ logical operators: && || !

@ integer ranges: 1:4 is equivalent to integer array [1,2,3,4]

Operators on character strings
@ comparison operators: == !=

@ concatenation: +

@ extraction of substrings: if s is a string, then one can write s[3] or
s[4:6]

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 10 / 32

Macro-expressions (2/2)

Operators on arrays
o dereferencing: if v is an array, then v[2] is its 2 element
@ concatenation: +

o difference -: returns the first operand from which the elements of the
second operand have been removed

extraction of sub-arrays: e.g. v[4:6]

testing membership of an array: in operator
(example: "b" in ["a", "b", "c"] returns 1)

Macro-expressions can be used at two places:
@ inside macro directives, directly

@ in the body of the MOD file, between an at-sign and curly braces (like
@{expr}): the macro processor will substitute the expression with its
value

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 11 /32

Define directive

The value of a macro-variable can be defined with the @#define directive.

Syntax

@#define variable_name = expression

Examples

Q#tdefine x = 5 // Integer
Q@#define y = "US" // String
@#define v = [1, 2, 4] // Integer array
Q@#define w = ["US", "EA"] // String array
@#define z = 3 + v[2] // Equals 5
O#define t = ("US" in w) // Equals 1 (true)

Sébastien Villemot (OFCE)

The Dynare Macro-processor June 13, 2017 12 / 32

Expression substitution

Dummy example

Before macro-processing
@#define x = ["B", "C"]
Q#define i = 2

model;
A = o{x[il};
end;

After macro-processing

model;

Sébastien Villemot (OFCE) The Dynare Macro-processor

June 13, 2017

13/ 32

Inclusion directive (1/2)

@ This directive simply includes the content of another file at the place
where it is inserted.

Syntax

@#include "filename" J
Example

O#include "modelcomponent.mod" J

e Exactly equivalent to a copy/paste of the content of the included file

o Note that it is possible to nest includes (i.e. to include a file from an
included file)

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 14 / 32

Inclusion directive (2/2)

@ The filename can be given by a macro-variable (useful in loops):

Example with variable

O#define fname = "modelcomponent.mod"
O#include fname

@ Files to include are searched for in current directory. Other directories
can be added with @includepath directive, -I command line option
or [paths] section in config file.

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 15 / 32

Loop directive

Syntax

@#for variable_name in array_expr
loop_body
O#endfor

Example: before macro-processing

model;
@#for country in ["home", "foreign"]
GDP_@{country} = A * K_@{country}~a * L_@{country}~(1-a);
O#endfor
end;

Example: after macro-processing
model;
GDP_home = A * K_home”a * L_home~(1-a);
GDP_foreign = A * K_foreign~a * L_foreign~(1-a);
end;

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017

16 / 32

Conditional inclusion directives (1/2)

Syntax 1 Syntax 2

@#if integer_expr O#if integer_expr
body included if expr != 0

body included if expr I= 0
Q#endif Q#else

body included if expr ==
O#endif

Example: alternative monetary policy rules

Q#tdefine linear _mon_pol = 0 // or 1
model;
@#if linear_mon_pol

i = wxi(-1) + (1-w)*i_ss + w2*(pie-piestar);
Q#telse

i =1(-1)"w * i_ss”"(1-w) * (pie/piestar) w2;
Q#endif

end;

Sébastien Villemot (OFCE) The Dynare Macro-processor

June 13, 2017

17 / 32

Conditional inclusion directives (2/2)

Syntax 1 Syntax 2
e#ifdef variable_name O#ifdef variable_name
body included if variable body included if variable
defined defined
Q#endif Q#else
body included if variable not
defined
O#endif)

There is also @#ifndef, which is the opposite of @#ifdef (i.e. it tests
whether a variable is not defined).

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 18 / 32

Echo and error directives

@ The echo directive will simply display a message on standard output

@ The error directive will display the message and make Dynare stop
(only makes sense inside a conditional inclusion directive)

Syntax

O#echo string_expr
@#error string expr

Examples

O#echo "Information message."
Q@#error "Error message!"

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 19 / 32

Saving the macro-expanded MOD file

o For debugging or learning purposes, it is possible to save the output
of the macro-processor

@ This output is a valid MOD file, obtained after processing the
macro-commands of the original MOD file

@ Just add the savemacro option on the Dynare command line (after
the name of your MOD file)

o If MOD file is filename.mod, then the macro-expanded version will
be saved in filename-macroexp.mod

@ You can specify the filename for the macro-expanded version with the
syntax savemacro=mymacroexp.mod

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 20 / 32

Outline

e Typical usages

Sébastien Villemot (OFCE)

The Dynare Macro-processor

Modularization

@ The @#include directive can be used to split MOD files into several
modular components
@ Example setup:
modeldesc.mod: contains variable declarations, model equations and
shocks declarations
simulate.mod: includes modeldesc.mod, calibrates parameters and
runs stochastic simulations
estim.mod: includes modeldesc.mod, declares priors on parameters
and runs bayesian estimation

@ Dynare can be called on simulate.mod and estim.mod
@ But it makes no sense to run it on modeldesc.mod

@ Advantage: no need to manually copy/paste the whole model (at the
beginning) or changes to the model (during development)

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 22 /32

Indexed sums or products

Example: moving average

Before macro-processing
Q#tdefine window = 2

var x MA_x;
model;

MA_x = 1/@{2*window+1}x*(
Q@#for i in -window:window
+x(e{i})

Q@#endfor
)

end;

w

After macro-processing
var x MA_x;

model;

MA_x = 1/5%(
+x(-2)
+x(-1)
+x(0)
+x(1)
+x(2)

);
end;

Sébastien Villemot (OFCE)

The Dynare Macro-processor

June 13, 2017

23 /32

Multi-country models
MOD file skeleton example

@#define countries = ["US", "EA", "AS", "JP", "RC"]
@#define nth_co = "US"

@#for co in countries

var Y_@{co} K_@{co} L_@{co} i_@{co} E_@{co} ...;
parameters a_@{co} ...;

varexo ...;

Q#endfor

model;
@#for co in countries
Y_@{co} = K_@{co}"a_@{co} * L_@{co}"(1-a_@{co});

Q@# if co != nth_co
(1+i_@{co}) = (1+i_@{nth_co}) * E_@{co}(+1) / E_@{co}; // UIP relation
Q# else

E_@{co} = 1;
O# endif
Q#endfor
end;
Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017

24 /32

Endogeneizing parameters (1/4)

@ When doing the steady-state calibration of the model, it may be
useful to consider a parameter as an endogenous (and vice-versa)

e Example:
141 19 1\e3
y:<a££ £+ (1—a)tk 5)
14
lab__rat = we
py

@ In the model, « is a (share) parameter, and lab_rat is an endogenous
variable
@ We observe that:

» calibrating « is not straigthforward!
> on the contrary, we have real world data for lab_rat
> it is clear that these two variables are economically linked

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 25 /32

Endogeneizing parameters (2/4)

@ Therefore, when computing the steady state:

» we make a an endogenous variable and /ab__rat a parameter
» we impose an economically relevant value for lab_ rat
> the solution algorithm deduces the implied value for «

@ We call this method “variable flipping”

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 26 / 32

Endogeneizing parameters (3/4)

Example implementation

o File modeqgs.mod:

» contains variable declarations and model equations
» For declaration of alpha and lab_rat:
O#if steady

var alpha;
parameter lab_rat;
Q#telse
parameter alpha;
var lab_rat;
Q#tendif

Sébastien Villemot (OFCE) The Dynare Macro-processor

June 13, 2017 27 / 32

Endogeneizing parameters (4/4)

Example implementation

o File

steadystate.mod:

> begins with @#define steady = 1

v

v

v

then with @#include "modeqs.mod"

initializes parameters (including lab_rat, excluding alpha)
computes steady state (using guess values for endogenous, including
alpha)

saves values of parameters and endogenous at steady-state in a file,
using the save_params_and_steady_state command
simulate.mod:

begins with @#define steady = 0

then with @#include "modeqs.mod"

loads values of parameters and endogenous at steady-state from file,
using the load_params_and_steady_state command

computes simulations

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 28 / 32

MATLAB /Octave loops vs macro-processor loops (1/3)

Suppose you have a model with a parameter p, and you want to make
simulations for three values: p = 0.8,0.9,1. There are several ways of
doing this:

With a MATLAB/Octave loop

rhos = [0.8, 0.9, 1]1;

for i = 1:length(rhos)
rho = rhos(i);
stoch_simul (order=1);
end

@ The loop is not unrolled
o MATLAB/Octave manages the iterations

@ Interesting when there are a lot of iterations

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 29 /32

MATLAB /Octave loops vs macro-processor loops (2/3)

With a macro-processor loop (case 1)
rhos = [0.8, 0.9, 1];
O#for i in 1:3
rho = rhos(@{il});
stoch_simul (order=1) ;
Q@#endfor

@ Very similar to previous example

@ Loop is unrolled

@ Dynare macro-processor manages the loop index but not the data

array (rhos)

Sébastien Villemot (OFCE) The Dynare Macro-processor

June 13, 2017 30/ 32

MATLAB /Octave loops vs macro-processor loops (3/3)

With a macro-processor loop (case 2)
@#for rho_val in ["0.8", "0.9", "1"]
rho = @{rho_val};
stoch_simul (order=1);
O#endfor

@ Advantage: shorter syntax, since list of values directly given in the
loop construct

o Note that values are given as character strings (the macro-processor
does not know floating point values)

@ Inconvenient: can not reuse an array stored in a MATLAB/Octave
variable

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 31/32

Thanks for your attention!

Questions?

@@ Copyright © 2008-2017 Dynare Team
Licence: Creative Commons Attribution-ShareAlike 4.0

Sébastien Villemot (OFCE) The Dynare Macro-processor June 13, 2017 32/32

http://creativecommons.org/licenses/by-sa/4.0/

	Overview
	Syntax
	Typical usages

