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Introduction

Perfect foresight = agents perfectly anticipate all future shocks
Concretely, at period 1:

▶ agents learn the value of all future shocks;
▶ since there is shared knowledge of the model and of future shocks, agents can compute their

optimal plans for all future periods;
▶ optimal plans are not adjusted in periods 2 and later
⇒ the model behaves as if it were deterministic.

Cost of this approach: the effect of future uncertainty is not taken into account (e.g. no
precautionary motive)
Advantage: numerical solution can be computed exactly (up to rounding errors),
contrarily to perturbation or global solution methods for rational expectations models
In particular, nonlinearities fully taken into account (e.g. occasionally binding constraints)

Sébastien Villemot (Dynare Team) Deterministic Models 28 May 2024 2 / 74



Outline

1 Presentation of the problem

2 Solution techniques

3 Shocks: temporary/permanent, unexpected/pre-announced

4 Occasionally binding constraints

5 More unexpected shocks

6 Extended path

Sébastien Villemot (Dynare Team) Deterministic Models 28 May 2024 3 / 74



Outline

1 Presentation of the problem

2 Solution techniques

3 Shocks: temporary/permanent, unexpected/pre-announced

4 Occasionally binding constraints

5 More unexpected shocks

6 Extended path

Sébastien Villemot (Dynare Team) Deterministic Models 28 May 2024 4 / 74



The (deterministic) neoclassical growth model

max
{ct}∞

t=1

∞∑
t=1

βt−1 c1−σ
t

1− σ

s.t.
ct + kt = Atkαt−1 + (1− δ)kt−1

First order conditions:
c−σ

t = βc−σ
t+1

(
αAt+1kα−1

t + 1− δ
)

ct + kt = Atkαt−1 + (1− δ)kt−1

Steady state:

k̄ =
(

1− β(1− δ)
βαĀ

) 1
α−1

c̄ = Āk̄α − δk̄
Note the absence of stochastic elements! No expectancy term, no probability distribution
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Dynare code (1/3)
rcb_basic.mod

var c k;
varexo A;
parameters alpha beta gamma delta;

alpha=0.5;
beta=0.95;
gamma=0.5;
delta=0.02;

model;
c + k = A*k(-1)^alpha + (1-delta)*k(-1);
c^(-gamma) = beta*c(+1)^(-gamma)*(alpha*A(+1)*k^(alpha-1) + 1 - delta);

end;
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Dynare code (2/3)
rcb_basic.mod

// Give an initial guess for the steady state solver
initval;

A = 1;
k = 40;
c = 5;

end;

// Actually compute the steady state
steady;
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Dynare code (3/3)
rcb_basic.mod

// Declare a positive technological shock in period 1
shocks;

var A;
periods 1;
values 1.2;

end;

// Prepare the deterministic simulation over 100 periods
perfect_foresight_setup(periods=100);

// Perform the simulation
perfect_foresight_solver;

// Display the path of consumption
rplot c;
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Simulated consumption path
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The general problem

Deterministic, perfect foresight, case:

f (yt+1, yt , yt−1, ut) = 0

y : vector of endogenous variables
u : vector of exogenous shocks

Identification rule: as many endogenous (y) as equations (f )
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Return to the neoclassical growth model

yt =
(

ct
kt

)

ut = At

f (yt+1, yt , yt−1, ut) =
(

c−σ
t − βc−σ

t+1

(
αAt+1kα−1

t + 1− δ
)

ct + kt − Atkαt−1 + (1− δ)kt−1

)

Sébastien Villemot (Dynare Team) Deterministic Models 28 May 2024 11 / 74



What if more than one lead or one lag?

A model with more than one lead or lag can be transformed in the form with one lead and
one lag using auxiliary variables
Transformation done automatically by Dynare
For example, if there is a variable with two leads xt+2:

▶ create a new auxiliary variable a
▶ replace all occurrences of xt+2 by at+1
▶ add a new equation: at = xt+1

Symmetric process for variables with more than one lag
With future uncertainty, the transformation is more elaborate (but still possible) on
variables with leads
write_latex_original_model and write_latex_dynamic_model show model before
and after substitution
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Steady state

A steady state, ȳ , for the model satisfies

f (ȳ , ȳ , ȳ , ū) = 0

Note that a steady state is conditional to:
▶ The steady state values of exogenous variables ū
▶ The value of parameters (implicit in the above definition)

Even for a given set of exogenous and parameter values, some (nonlinear) models have
several steady states
Two possibilities for the steady state in Dynare:

▶ If analytical steady state is known, can be given in steady_state_model block
▶ Otherwise, numerical procedure based on a nonlinear solver, with the steady command
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Towards a solution

In each period, agent needs to choose control variables (e.g. consumption) today, taking
into account:

▶ the known time path of the exogenous variables
▶ the current endogenous states that cannot be altered anymore (e.g. capital)
▶ the consequences of today’s actions for future decisions

Assume finite horizon problem that terminates in period T with
▶ initial states in y0 given
▶ terminal choice yT+1 known

⇒ problem boils down to simultaneous equations system with ny × T equations in
ny × T unknowns (where ny is the number of endogenous)
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A two-boundary value problem
Stacked system for a perfect foresight simulation over T periods:

f (y2, y1, y0, u1) = 0
f (y3, y2, y1, u2) = 0

...
f (yT+1, yT , yT−1, uT ) = 0

for y0 and yT+1 given.

Compact representation:
F (Y ) = 0

where Y =
[

y ′
1 y ′

2 . . . y ′
T

]′
and y0, yT+1, u1 . . . uT are implicit
Resolution uses a Newton-type method on the stacked system
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Approximating infinite-horizon problems
The above technique numerically computes trajectories for given shocks over a finite
number of periods
Suppose you are rather interested in solving an infinite-horizon problem
One option consists in computing the recursive policy function (as with perturbation
methods), but this is challenging

▶ in the general case, this function is defined over an infinite-dimensional space (because all
future shocks are state variables)

▶ in the particular case of a return to equilibrium, the state-space is finite (starting from the
date where all shocks are zero), but a projection method would still be needed

▶ in any case, Dynare does not do that
An easier way, in the case of a return to equilibrium, is to approximate the solution by a
finite-horizon problem

▶ consists in computing the trajectory with yT+1 = ȳ and T large enough
▶ drawback compared to the policy function approach: the solution is specific to a given

sequence of shocks, and not generic
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The Newton method (unidimensional)
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The Newton method (multidimensional)

Start from an initial guess Y (0)

Iterate. Updated solutions Y (k+1) are obtained by solving a linear system:

F (Y (k)) +
[

∂F
∂Y

] (
Y (k+1) − Y (k)

)
= 0

Terminal condition:
||Y (k+1) − Y (k)|| < εY

or
||F (Y (k))|| < εF

Convergence may never happen if function is ill-behaved or initial guess Y (0) too far from
a solution
⇒ to avoid an infinite loop, abort after a given number of iterations
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Controlling the Newton algorithm from Dynare

The following options to the perfect_foresight_solver can be used to control the Newton
algorithm:

maxit Maximum number of iterations before aborting (default: 50)
tolf Convergence criterion based on function value (εF ) (default: 10−5)
tolx Convergence criterion based on change in the function argument (εY ) (default:

10−5)
stack_solve_algo select between the different flavors of Newton algorithms (see thereafter)
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A practical difficulty

The Jacobian can be very large: for a simulation over T periods of a model with ny
endogenous variables, it is a matrix of dimension ny T × ny T .

Three alternative ways of dealing with the large problem size:
Exploit the particular structure of the Jacobian using a technique developped by
Laffargue, Boucekkine and Juillard (was the default method in Dynare ≤ 4.2)
Handle the Jacobian as one large, sparse, matrix (now the default method)
Block decomposition, which is a divide-and-conquer method (can actually be combined
with one of the previous two methods)
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Shape of the Jacobian

∂F
∂Y =



B1 C1
A2 B2 C2

. . . . . . . . .
At Bt Ct

. . . . . . . . .
AT−1 BT−1 CT−1

AT BT


where

As = ∂f
∂yt−1

(ys+1, ys , ys−1) Bs = ∂f
∂yt

(ys+1, ys , ys−1)

Cs = ∂f
∂yt+1

(ys+1, ys , ys−1)
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Laffargue-Boucekkine-Juillard algorithm (1/5)

The idea is to triangularize the stacked system:

B1 C1
A2 B2 C2

. . . . . . . . .
. . . . . . . . .

AT−1 BT−1 CT−1
AT BT


∆Y = −



f (y2, y1, y0, u1)
f (y3, y2, y1, u2)

...

...
f (yT , yT−1, yT , uT−1)
f (yT+1, yT , yT−1, uT )


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Laffargue-Boucekkine-Juillard algorithm (2/5)

First period is special:

I D1
B2 − A2D1 C2

A3 B3 C3
. . . . . . . . .

AT−1 BT−1 CT−1
AT BT


∆Y = −



d1
f (y3, y2, y1, u2) + A2d1

f (y4, y3, y2, u3)
...

f (yT , yT−1, yT , uT−1)
f (yT+1, yT , yT−1, uT )


where

D1 = B−1
1 C1

d1 = B−1
1 f (y2, y1, y0, u1)
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Laffargue-Boucekkine-Juillard algorithm (3/5)

Normal iteration of the triangularization:

I D1
I D2

B3 − A3D2 C3
. . . . . . . . .

AT−1 BT−1 CT−1
AT BT


∆Y = −



d1
d2

f (y4, y3, y2, u3) + A3d2
...

f (yT , yT−1, yT , uT−1)
f (yT+1, yT , yT−1, uT )


where

D2 = (B2 − A2D1)−1C2

d2 = (B2 − A2D1)−1(f (y3, y2, y1, u2) + A2d1)
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Laffargue-Boucekkine-Juillard algorithm (4/5)

Final iteration: 

I D1
I D2

I D3
. . . . . .

I DT−1
I


∆Y = −



d1
d2
d3
...

dT−1
dT


where

dT = (BT − AT DT−1)−1(f (yT+1, yT , yT−1, uT ) + AT dT−1)

Sébastien Villemot (Dynare Team) Deterministic Models 28 May 2024 26 / 74



Laffargue-Boucekkine-Juillard algorithm (5/5)

The system is then solved by backward iteration:

yk+1
T = yk

T − dT

yk+1
T−1 = yk

T−1 − dT−1 − DT−1(yk+1
T − yk

T )
...

yk+1
1 = yk

1 − d1 − D1(yk+1
2 − yk

2 )

No need to ever store the whole Jacobian: only the Ds and ds have to be stored
This technique is memory efficient (was the default method in Dynare ≤ 4.2 for this
reason)
Still available as option stack_solve_algo=1 of perfect_foresight_solver
command
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Sparse matrices (1/3)

Consider the following matrix with most elements equal to zero:

A =

 0 0 2.5
−3 0 0
0 0 0


Dense matrix storage (in column-major order) treats it as a one-dimensional array:

[0,−3, 0, 0, 0, 0, 2.5, 0, 0]

Sparse matrix storage:
▶ views it as a list of triplets (i , j , v) where (i , j) is a matrix coordinate and v a non-zero value
▶ A would be stored as

{(2, 1,−3), (1, 3, 2.5)}
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Sparse matrices (2/3)

In the general case, given an m × n matrix with k non-zero elements:
▶ dense matrix storage = 8mn bytes
▶ sparse matrix storage = 16k bytes
▶ sparse storage more memory-efficient as soon as k < mn/2

(assuming 32-bit integers and 64-bit floating point numbers)
In practice, sparse storage becomes interesting if k ≪ mn/2, because linear algebra
algorithms are vectorized
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Sparse matrices (3/3)

The Jacobian of the deterministic problem is a sparse matrix:
▶ Lots of zero blocks
▶ The As , Bs and Cs usually are themselves sparse

Family of optimized algorithms for sparse matrices (including matrix inversion for our
Newton algorithm)
Available as native objects in MATLAB/Octave (see the sparse command)
Works well for medium size deterministic models
Nowadays more efficient than Laffargue-Boucekkine-Juillard, even though it does not
exploit the particular structure of the Jacobian
⇒ now the default method in Dynare (stack_solve_algo=0)
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Block decomposition (1/3)

Idea: apply a divide-and-conquer technique to model simulation
Principle: identify recursive and simultaneous blocks in the model structure
First block (prologue): equations that only involve variables determined by previous
equations; example: AR(1) processes
Last block (epilogue): pure output/reporting equations
In between: simultaneous blocks, that depend recursively on each other
The identification of the blocks is performed through a matching between variables and
equations (normalization), then a reordering of both
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Block decomposition (2/3)
Form of the reordered Jacobian (equations in lines, variables in columns)
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Block decomposition (3/3)

Can provide a significant speed-up on large models
Implemented in Dynare by Ferhat Mihoubi
Available as option block to the model command
Bigger gains when used in conjunction with bytecode or use_dll option
Can be combined with any flavour of the Newton method applied to each individual block
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Homotopy
Another divide-and-conquer method, but in the shocks dimension
Useful if shocks so large that convergence does not occur
Idea: achieve convergence on smaller shock size, then use the result as initial guess for
bigger shock size
Algorithm:

1 λ← 0: scaling factor of shocks (simulation succeeds when λ = 1)
2 s ← 1: step size
3 Try to compute simulation with shocks scaling factor equal to λ + s, using last successful

computation as initial guess (in the beginning, use initial steady state at all t as initial guess)
⋆ If success: λ← λ + s. Stop if λ = 1. Otherwise possibly increase s.
⋆ If failure: diminish s.

4 Go to 3
Works with both temporary and permanent shocks (i.e. shocks and endval)
Can be combined with any deterministic solver
Used by default by perfect_foresight_solver (disable with option no_homotopy)
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Example: neoclassical growth model with investment

The social planner problem is as follows:

max
{ct+j ,ℓt+j ,kt+j }∞

j=0

∞∑
j=0

βju(ct+j , ℓt+j)

s.t.

yt = ct + it
yt = At f (kt−1, ℓt)

kt = it + (1− δ)kt−1

At = A⋆eat

at = ρ at−1 + εt

where εt is an exogenous shock and k0 given.
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Specifications

Utility function:

u(ct , ℓt) =

(
cθt (1− ℓt)1−θ

)1−τ

1− τ

Production function:
f (kt−1, ℓt) =

(
αkψt−1 + (1− α)ℓψt

) 1
ψ

Sébastien Villemot (Dynare Team) Deterministic Models 28 May 2024 37 / 74



First order conditions

Euler equation:

uc(ct , ℓt) = β
[
uc(ct+1, ℓt+1)

(
At+1fk(kt , ℓt+1) + 1− δ

)]
Arbitrage between consumption and leisure:

uℓ(ct , ℓt)
uc(ct , ℓt)

+ At fℓ(kt−1, ℓt) = 0

Resource constraint:
ct + kt = At f (kt−1, ℓt) + (1− δ)kt−1
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Dynare code (1/3)

var k, y, L, c, A, a;
varexo epsilon;
parameters beta, theta, tau, alpha, psi, delta, rho, Astar;

beta = 0.99;
theta = 0.357;
tau = 2;
alpha = 0.45;
psi = -0.1;
delta = 0.02;
rho = 0.8;
Astar = 1;

Sébastien Villemot (Dynare Team) Deterministic Models 28 May 2024 39 / 74



Dynare code (2/3)

model;
a = rho*a(-1) + epsilon;
A = Astar*exp(a);
y = A*(alpha*k(-1)^psi+(1-alpha)*L^psi)^(1/psi);
k = y-c + (1-delta)*k(-1);
(1-theta)/theta*c/(1-L) - (1-alpha)*(y/L)^(1-psi);
(c^theta*(1-L)^(1-theta))^(1-tau)/c =

beta*(c(+1)^theta*(1-L(+1))^(1-theta))^(1-tau)/c(+1)
*(alpha*(y(+1)/k)^(1-psi)+1-delta);

end;
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Dynare code (3/3)

steady_state_model;
a = epsilon/(1-rho);
A = Astar*exp(a);
Output_per_unit_of_Capital=((1/beta-1+delta)/alpha)^(1/(1-psi));
Consumption_per_unit_of_Capital=Output_per_unit_of_Capital-delta;
Labour_per_unit_of_Capital=(((Output_per_unit_of_Capital/A)^psi-alpha)/(1-alpha))^(1/psi);
Output_per_unit_of_Labour=Output_per_unit_of_Capital/Labour_per_unit_of_Capital;
Consumption_per_unit_of_Labour=Consumption_per_unit_of_Capital/Labour_per_unit_of_Capital;

% Compute steady state of the endogenous variables.
L=1/(1+Consumption_per_unit_of_Labour/((1-alpha)*theta/(1-theta)*Output_per_unit_of_Labour^(1-psi)));
c=Consumption_per_unit_of_Labour*L;
k=L/Labour_per_unit_of_Capital;
y=Output_per_unit_of_Capital*k;

end;
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Scenario 1: Return to equilibrium
Return to equilibrium starting from k0 = 0.5k̄.

Fragment from rbc_det1.mod
...
steady;

ik = varlist_indices('k',M_.endo_names);
kstar = oo_.steady_state(ik);

histval;
k(0) = kstar/2;

end;

perfect_foresight_setup(periods=300);
perfect_foresight_solver;
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Scenario 2: A temporary shock to TFP
The economy starts from the steady state
There is an unexpected negative shock at the beginning of period 1: ε1 = −0.1

Fragment from rbc_det2.mod
...
steady;

shocks;
var epsilon;
periods 1;
values -0.1;

end;

perfect_foresight_setup(periods=300);
perfect_foresight_solver;
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Scenario 3: Pre-announced favorable shocks in the future
The economy starts from the steady state
There is a sequence of positive shocks to At : 4% in period 5 and an additional 1% during
the 4 following periods

Fragment from rbc_det3.mod
...
steady;

shocks;
var epsilon;
periods 4, 5:8;
values 0.04, 0.01;

end;

perfect_foresight_setup(periods=300);
perfect_foresight_solver;
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Scenario 4: A permanent shock
The economy starts from the initial steady state (a0 = 0)
In period 1, TFP increases by 5% permanently (and this was unexpected)

Fragment from rbc_det4.mod
...
initval;

epsilon = 0;
end;

steady;

endval;
epsilon = (1-rho)*log(1.05);

end;

steady;
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Scenario 5: A pre-announced permanent shock

The economy starts from the initial steady state (a0 = 0)
In period 6, TFP increases by 5% permanently
A shocks block is used to maintain TFP at its initial level during periods 1–5

Fragment from rbc_det5.mod
...
// Same initval and endval blocks as in Scenario 4
...

shocks;
var epsilon;
periods 1:5;
values 0;

end;
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Summary of commands

initval for the initial steady state (followed by steady)
endval for the terminal steady state (followed by steady)

histval for initial or terminal conditions out of steady state
shocks for shocks along the simulation path

perfect_foresight_setup prepare the simulation
perfect_foresight_solver compute the simulation
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Under the hood

The paths for exogenous and endogenous variables are stored in two MATLAB/Octave
matrices:

oo_.endo_simul = ( y0 y1 . . . yT yT+1 )
oo_.exo_simul’ = ( ⊠ u1 . . . uT ⊠ )

perfect_foresight_setup initializes those matrices, given the shocks, initval,
endval and histval blocks

▶ y0, yT+1 and u1 . . . uT are the constraints of the problem
▶ y1 . . . yT are the initial guess for the Newton algorithm

perfect_foresight_solver replaces y1 . . . yT in oo_.endo_simul by the solution
Notes:

▶ for historical reasons, dates are in columns in oo_.endo_simul and in lines in oo_.exo_simul, hence the
transpose (’) above

▶ this is the setup for no lead and no lag on exogenous
▶ if one lead and/or one lag, u0 and/or uT+1 would become relevant
▶ if more than one lead and/or lag, matrices would be larger
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Initial guess

The Newton algorithm needs an initial guess Y (0) = [y (0)
1

′
. . . y (0)

T
′
].

What is Dynare using for this?
By default, if there is no endval block, it is the steady state as specified by initval
(repeated for all simulations periods)
Or, if there is an endval block, then it is the final steady state declared within this block
Possibility of customizing this default by manipulating oo_.endo_simul after
perfect_foresight_setup (but of course before perfect_foresight_solver!)
If homotopy is triggered, the initial guess of subsequent iterations is the result of the
previous iteration
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Alternative way of specifying terminal conditions

With the differentiate_forward_vars option of the model block, Dynare will
substitute forward variables using new auxiliary variables:

▶ Substitution: xt+1 → xt + at+1
▶ New equation: at = xt+1 − xt

If the terminal condition is a steady state, the new auxiliary variables have obvious zero
terminal condition
Useful when:

▶ the final steady state is hard to compute (this transformation actually provides a way to find
it)

▶ the model is very persistent and takes time to go back to steady state (this transformation
avoids a kink at the end of the simulation if T is not large enough)
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Outline

1 Presentation of the problem
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3 Shocks: temporary/permanent, unexpected/pre-announced
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5 More unexpected shocks

6 Extended path

Sébastien Villemot (Dynare Team) Deterministic Models 28 May 2024 51 / 74



Zero nominal interest rate lower bound

Implemented by writing the law of motion under the following form in Dynare:

it = max
{

0, (1− ρi)i∗ + ρi it−1 + ρπ(πt − π∗) + εi
t

}
Warning: this form will be accepted in a stochastic model, but the constraint will not be
enforced in that case!
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Irreversible investment
Same model as above, but the social planner is constrained to positive investment paths:

max
{ct+j ,ℓt+j ,kt+j }∞

j=0

∞∑
j=0

βju(ct+j , ℓt+j)

s.t.

yt = ct + it
yt = At f (kt−1, ℓt)

kt = it + (1− δ)kt−1

it ≥ 0
At = A⋆eat

at = ρ at−1 + εt

where the technology (f ) and the preferences (u) are as above.
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First order conditions

uc(ct , ℓt)− µt = β [uc(ct+1, ℓt+1) (At+1fk(kt , ℓt+1) + 1− δ)− µt+1(1− δ)]
uℓ(ct , ℓt)
uc(ct , ℓt)

+ At fl(kt−1, ℓt) = 0

ct + kt = At f (kt−1, ℓt) + (1− δ)kt−1

Complementarity condition:
µt = 0 and it ≥ 0

or

µt > 0 and it = 0

where µt ≥ 0 is the Lagrange multiplier associated to the non-negativity constraint for
investment.
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Mixed complementarity problems
A mixed complementarity problem (MCP) is given by:

▶ function F (x) : Rn → Rn

▶ lower bounds ℓi ∈ R ∪ {−∞}
▶ upper bounds ui ∈ R ∪ {+∞}

A solution of the MCP is a vector x ∈ Rn such that for each i ∈ {1 . . . n}, one of the
following alternatives holds:

▶ ℓi < xi < ui and Fi(x) = 0
▶ xi = ℓi and Fi(x) ≥ 0
▶ xi = ui and Fi(x) ≤ 0

Notation:
F (x) ⊥ ℓ ≤ x ≤ u

Solving a square system of nonlinear equations is a particular case (with ℓi = −∞ and
ui = +∞ for all i)
Optimality problems with inequality constraints are naturally expressed as MCPs (finite
bounds are imposed on Lagrange multipliers)
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The irreversible investment model in Dynare

MCP solver triggered with option lmmcp of perfect_foresight_solver
Complementarity condition described by equation tag mcp

Fragment from rbcii.mod
(c^theta*(1-L)^(1-theta))^(1-tau)/c - mu =

beta*((c(+1)^theta*(1-L(+1))^(1-theta))^(1-tau)/c(+1)
*(alpha*(y(+1)/k)^(1-psi)+1-delta)-mu(+1)*(1-delta));

...
[ mcp = 'i > 0' ]
mu = 0;

...
perfect_foresight_setup(periods=400);
perfect_foresight_solver(lmmcp, maxit=200);
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OccBin (1/2)
Piecewise linear approach of Guerrieri and Iacoviello (JME, 2015)
Under certainty equivalence; but quite fast, works on large models
Relies on a solution under perturbation and not a deterministic solver, hence nonlinearities
other than regime change are not taken into account

Example
model;

[name='Notional rate Taylor rule']
i_not=rho*i_not(-1)+rho*(phi_pi*pie+phi_y*y)+zeps_i;
[name='Observed interest rate', relax='zlb']
i = i_not;
[name='Observed interest rate', bind='zlb']
i = i_elb;

...
end;
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OccBin (2/2)

Example (cont’d)
occbin_constraints;

name 'zlb'; bind i_not <= i_elb;
end;

shocks(surprise);
var zeps_i;
periods 1 2;
values -0.01 -0.02;

end;

occbin_setup;
occbin_solver(simul_periods=20, simul_check_ahead_periods=50);
occbin_graph y i i_not pie;
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Simulating unexpected shocks

With a perfect foresight solver:
shocks are unexpected in period 1
but in subsequent periods they are anticipated

How to simulate an unexpected shock at a period t > 1?
Do a perfect foresight simulation from periods 0 to T without the unexpected shock in t
(but with other expected shocks)
Do another perfect foresight simulation from periods t to T

▶ applying the unexpected shock in t (and keeping expected shocks),
▶ and using the results of the first simulation as initial condition

Combine the two simulations:
▶ use the first one for periods 1 to t − 1,
▶ and the second one for t to T
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A Dynare example

Simulation of a scenario with:
Pre-announced (negative) shocks in periods 5 and 15
Unexpected (positive) shock in period 10

From rbc_unexpected.mod:

...
// Declare pre-announced shocks
shocks(learnt_in=1);

var epsilon;
periods 5, 15;
values -0.1, -0.1;

end;
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A Dynare example (continued)

// Declare shocks learnt in period 10
shocks(learnt_in=10);

var epsilon;
periods 10;
values 0.1;

end;

perfect_foresight_with_expectation_errors_setup(periods=300);
perfect_foresight_with_expectation_errors_solver;
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Consumption path
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Additional details

The perfect_foresight_with_expectation_errors_solver command automatically
runs the required deterministic simulations and combines the paths to get the solution
More complex scenarios are possible, where agents learn in period t > 1 about shock(s) in
periods t + s for s > 0 (i.e. pre-announced shocks, but which are learnt in some period >
1)
In the context of permanent shocks, information can also be learnt about terminal
conditions, using the endval(learnt_in=...) block
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Extended path (EP) algorithm

Idea: use the previous method to simulate a rational expectations (RE) model (i.e. with
stochastic shocks that can happen at every period). . .
. . . but under the simplifying assumption that agents believe that the economy will not be
perturbed in the future (all future shocks will be at their steady state value ū = 0), and
do not update their belief when observing shocks (hence we are not solving the true RE
model, but an approximation of it)
Advantage: deterministic nonlinearities fully taken into account
Inconvenient: solution under certainty equivalence (Jensen inequality is violated). For
example, no precautionary motive.
When the goal is to generate a timeseries, this method is strictly superior to first-order
perturbation (which is also under certainty equivalence, but does not take into account
deterministic nonlinearities)
Method introduced by Fair and Taylor (1983)
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Extended path (EP) algorithm (continued)
Algorithm

1 H ← Set the horizon of the perfect foresight (PF) model
2 (ȳ , ū)← Compute steady state of the model
3 y0 ← Choose an initial condition for the endogenous variables
4 for t = 1 to T
5 ut ← Draw random shocks for the current period
6 yt ← Solve a PF with:

⋆ Initial condition: yt−1 computed in previous iteration
⋆ Terminal condition: yt+H = ȳ
⋆ Shocks: ut just drawn and ut+s = ū (for s > 0)

7 end for
Implemented under the command extended_path (with option order=0, which is the
default)
Option periods controls T
Option solver_periods controls H (defaults to 200)
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Extended path: Dynare example
From rbc_ep.mod:

...
// Declare shocks as in a stochastic setup
shocks;

var epsilon;
stderr 0.02;

end;

extended_path(periods=300);

// Plot 20 first periods of consumption
ic = varlist_indices('c', M_.endo_names);
plot(oo_.endo_simul(ic, 1:21));
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Stochastic extended path (SEP)

Idea: generalize the extended path method to take into account some future uncertainty
Approximation: at date t,

▶ agents know that there will be future stochastic shocks in periods t + 1 to t + k
▶ but they assume that there will be no more shocks in periods > t + k

k measures the degree of future uncertainty taken into account
We are still not solving the true RE model, but the larger k, the closer we are to the true
model (which corresponds to k = +∞).
Note: (plain) extended path as presented in the previous slides corresponds to k = 0
Additional approximation: the probability distribution about future uncertainty is
simplified using discrete numerical integration (a.k.a. quadrature)
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Gauss-Hermite quadrature (univariate)

Let X be a Gaussian random variable with mean zero and variance σ2
x > 0, and suppose

that we need to evaluate E[φ(X )], where φ is a continuous function
By definition we have:

E[φ(X )] = 1
σx
√

2π

∫ ∞

−∞
φ(x)e

− x2
2σ2

x dx

This integral can be approximated by a finite sum using the following result
(Gauss-Hermite quadrature formula at order n):∫ ∞

−∞
φ(z)e−z2

dz ≈
n∑

i=1
ωiφ(zi)

where zi (i = 1, . . . , n) are the roots of an order n Hermite polynomial, and the weights
ωi are positive and summing up to one (variable change: xi = zi

σx
√

2)
The higher n, the better the approximation
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Gauss-Hermite quadrature (multivariate)

Let X be a multivariate Gaussian random variable with mean zero and unit variance, and
suppose that we need to evaluate

E[φ(X )] = (2π)− p
2

∫
Rp

φ(x)e− 1
2 x′xdx

Let {(ωi , zi)}ni=1 be the weights and nodes of an order n univariate Gauss-Hermite
quadrature
This integral can be approximated using a tensor grid:∫

Rp
φ(z)e−z′zdz ≈

n∑
i1,...,ip=1

ωi1 . . . ωip φ(zi1 , . . . , zip )

Curse of dimensionality: The number of terms in the sum grows exponentially with the
number of shocks.
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Forward history
One shock, three quadrature nodes, order two SEP (k = 2)

ut

u3
t+1

u3
t+2 ω3ω3

u2
t+2 ω3ω2

u1
t+2 ω3ω1

u2
t+1

u3
t+2 ω2ω3

u2
t+2 ω2ω2

u1
t+2 ω2ω1

u1
t+1

u3
t+2 ω1ω3

u2
t+2 ω1ω2

u1
t+2 ω1ω1
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Stochastic extended path (SEP) (continued)

Algorithm similar to extended path (EP), except that instead of solving a perfect foresight
(PF) problem for each period, a larger problem is solved:

▶ equations determining future variables are replicated as many times as there are branches on
the tree of history;

▶ Gauss-Hermite quadratures are used to compute expectations against those future variables.
We face two curses of dimensionality (exponential complexity growth):

▶ Stochastic order (k)
▶ Number of shocks

In practice, only feasible for small k and small number of shocks
SEP triggered with option order=k of extended_path command
NB: currently no interface for controlling the number of nodes for the Gauss-Hermite
quadrature. The number of nodes has to be directly set in the options_ global structure
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Thanks for your attention!
Questions?

My email: sebastien@dynare.org

cba Copyright © 2015-2024 Dynare Team
License: Creative Commons Attribution-ShareAlike 4.0
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