
The Dynare Macro Processor

Sébastien Villemot

31 May 2024

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 1 / 47

Outline

1 Overview

2 Syntax

3 Common uses

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 2 / 47

Outline

1 Overview

2 Syntax

3 Common uses

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 3 / 47

Motivation

The Dynare language (used in .mod files) is well suited for many economic models
▶ It’s a markup language that defines models
▶ Lacks a programmatic element

The Dynare macro language adds a programmatic element to Dynare
▶ Introduces conditionals, loops, and other simple programmatic directives
▶ Used to speed up model development
▶ Useful in various situations

⋆ Multi-country models
⋆ Creation of modular .mod files
⋆ Variable flipping
⋆ Conditional inclusion of equations
⋆ ...among others

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 4 / 47

Design of the macro language

The Dynare macro language provides a set of macro commands that can be used in
.mod files
The macro processor transforms a .mod file with macro commands into a .mod file
without macro commands (doing text expansions/inclusions) and then feeds it to the
Dynare parser
The key point to understand is that the macro processor only does text substitution
(like the C preprocessor or the PHP language)

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 5 / 47

Dynare Flowchart

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 6 / 47

Outline

1 Overview

2 Syntax

3 Common uses

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 7 / 47

Macro Directives

Directives begin with: @#
A directive gives instructions to the macro processor
Main directives are:

▶ file inclusion: @#include
▶ definition of a macro processor variable or function: @#define
▶ conditional statements: @#if/@#ifdef/@#ifndef/@#else/@#elseif/@#endif
▶ loop statements: @#for/@#endfor

Most directives fit on one line. If needed however, two backslashes (i.e. \\) at the end of
a line indicate that the directive is continued on the next line.
Directives are not terminated with a semicolon

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 8 / 47

Values

The macro processor can handle values of 5 different types:
1 boolean (logical value, true or false)
2 real (double precision floating point number)
3 string (of characters)
4 tuple
5 array

Values of the types listed above can be cast to other types
▶ (real) "3.1" → 3.1
▶ (string) 3.1 → "3.1"
▶ (array) 4 → [4]
▶ (real) [5] → 5
▶ (real) [6, 7] → error
▶ (bool) -1 && (bool) 2 → true

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 9 / 47

Macro-expressions (1/8)

Macro-expressions are constructed using literals (i.e. fixed values) of the 5 basic types
described above, macro-variables, standard operators, function calls and comprehensions.
Macro-expressions can be used in two places:

▶ inside macro directives; no special markup is required
▶ in the body of the .mod file, between an “at”-sign and curly braces (like @{expr}); the

macro processor will substitute the expression with its value

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 10 / 47

Macro-expressions (2/8): Boolean

Boolean literals are true and false.

Operators on booleans
comparison operators: == !=
logical operators:

▶ conjunction (“and”): &&
▶ disjunction (“or”): ||
▶ negation (“not”): !

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 11 / 47

Macro-expressions (3/8): Real
Operators on reals

arithmetic operators: + - * / ˆ
comparison operators: < > <= >= == !=
logical operators: && || !
range with unit increment: 1:4 is equivalent to real array [1, 2, 3, 4]
(NB: [1:4] is equivalent to an array containing an array of reals, i.e. [[1, 2, 3, 4]])
range with user-defined increment:
4:-1.1:-1 is equivalent to real array [4, 2.9, 1.8, 0.7, -0.4]

Functions for reals
min, max, exp, ln (or log), log10
sign, floor, ceil, trunc, round, mod
sin, cos, tan, asin, acos, atan
sqrt, cbrt, erf, erfc, normpdf, normcdf, gamma, lgamma

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 12 / 47

Macro-expressions (4/8): String

String literals have to be declared between double quotes, e.g. "string"

Operators on character strings
comparison operators: < > <= >= == !=
concatenation: +
string length: length()
string emptiness: isempty()
extraction of substrings: if s is a string, then one can write s[3] or s[4:6]

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 13 / 47

Macro-expressions (5/8): Tuple

Tuples are enclosed by parentheses and elements are separated by commas (like (a,b,c) or
(1,2.2,c)).

Operators on tuples
comparison operators: == !=
functions: length(), isempty()
testing membership in tuple: in operator
(example: "b" in ("a", "b", "c") returns true)

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 14 / 47

Macro-expressions (6/8): Array (1/2)

Arrays are enclosed by brackets, and their elements are separated by commas (like
[1,[2,3],4] or ["US", "EA"]).

Operators on arrays
comparison operators: == !=
dereferencing: if v is an array, then v[2] is its 2nd element
concatenation: +
functions: sum(), length(), isempty()
extraction of sub-arrays: e.g. v[4:6]
testing membership of an array: in operator
(example: "b" in ["a", "b", "c"] returns true)

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 15 / 47

Macro-expressions (6/8): Array (2/2)
Arrays can be seen as representing a set of elements (assuming no element appears twice in
the array). Several set operations can thus be performed on arrays: union, intersection,
difference, Cartesian product and power.

Set operations on arrays
set union: |
set intersection: &
set difference: -
Cartesian product of two arrays: *
Cartesian power of an array: ˆ

For example: if A and B are arrays, then the following set operations are valid: A|B, A&B, A-B,
A*B, Aˆ3.
NB: the array resulting from Cartesian product or power has tuples as its elements.

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 16 / 47

Macro-expressions (7/8): Comprehension (1/3)

Comprehensions are a shorthand way of creating arrays from other arrays. This is done by
filtering, mapping, or both.

Filtering
Allows one to choose those elements from an array for which a condition holds
Syntax: [variable/tuple in array when condition]
Example: Choose even numbers from array

▶ Code: [i in 1:5 when mod(i,2) == 0]
▶ Result: [2, 4]

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 17 / 47

Macro-expressions (7/8): Comprehension (2/3)

Mapping
Allows one to apply a transformation to every element of an array
Syntax: [expr for variable/tuple in array]
Example: Square elements in array

▶ Code: [iˆ2 for i in 1:5]
▶ Result: [1, 4, 9, 16, 25]

Example: Swap pairs of an array
▶ Code: [(j,i) for (i,j) in (1:2)ˆ2]
▶ Result: [(1, 1), (2, 1), (1, 2), (2, 2)]

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 18 / 47

Macro-expressions (7/8): Comprehension (3/3)

Mapping and Filtering
Allows one to apply a transformation to the elements selected from an array
Syntax: [expr for variable/tuple in array when condition]
Example: Square of odd numbers between 1 and 5

▶ Code: [iˆ2 for i in 1:5 when mod(i,2) == 1]
▶ Result: [1, 9, 25]

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 19 / 47

Macro-expressions (8/8): Functions
Can take any number of arguments
Dynamic binding: is evaluated when invoked during the macroprocessing stage, not when
defined
Can be included in expressions; valid operators depend on return type

Declaration syntax
@#define function_signature = expression

Example
If we declare the following function:

@#define distance(x, y) = sqrt(x^2 + y^2)

Then distance(3, 4) will be equivalent to 5.

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 20 / 47

Defining macro-variables (1/2)
The value of a macro-variable can be defined with the @#define directive.
The macro processor has its own list of variables, which are different from model variables and
MATLAB/Octave variables

Syntax
@#define variable_name = expression

Examples
@#define x = 5 // Real
@#define y = "US" // String
@#define v = [1, 2, 4] // Real array
@#define w = ["US", "EA"] // String array
@#define z = 3 + v[2] // Equals 5
@#define t = ("US" in w) // Equals true

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 21 / 47

Defining macro-variables (2/2)
Macro variables can also be defined on the Dynare command line by using the -D option, for
easily switching between different flavours of a model.

Example 1
dynare myfile.mod -Dx=5

The macro-variable x will be equal to 5 when running myfile.mod.

Example 2
Use single quotes around the -D option when there are spaces or special characters in the
variable definition.

dynare myfile.mod '-DA=[i in [1,2,3] when i > 1]'

The macro-variable A will be equal to [2,3] when running myfile.mod.

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 22 / 47

Expression substitution
Dummy example

Before macro processing
@#define x = 1
@#define y = ["B", "C"]
@#define i = 2
@#define f(x) = x + " + " + y[i]
@#define i = 1

model;
A = @{y[i] + f("D")};

end;

After macro processing
model;

A = BD + B;
end;

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 23 / 47

Include directive (1/2)

This directive simply inserts the text of another file in its place

Syntax
@#include "filename"

Example
@#include "modelcomponent.mod"

Equivalent to a copy/paste of the content of the included file
Note that it is possible to nest includes (i.e. to include a file with an included file)

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 24 / 47

Include directive (2/2)

The filename can be given by a macro-variable (useful in loops):

Example with variable
@#define fname = "modelcomponent.mod"
@#include fname

Files to include are searched for in the current directory. Other directories can be added
with the @#includepath directive, the -I command line option, or the [paths] section
in config files.

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 25 / 47

Loop directive (1/4)
Syntax 1: Simple iteration over one variable
@#for variable_name in array_expr

loop_body
@#endfor

Syntax 2: Iteration over several variables at the same time
@#for tuple in array_expr

loop_body
@#endfor

Syntax 3: Iteration with some values excluded
@#for tuple_or_variable in array_expr when expr

loop_body
@#endfor

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 26 / 47

Loop directive (2/4)

Example: before macro processing
model;
@#for country in ["home", "foreign"]

GDP_@{country} = A * K_@{country}^a * L_@{country}^(1-a);
@#endfor
end;

Example: after macro processing
model;

GDP_home = A * K_home^a * L_home^(1-a);
GDP_foreign = A * K_foreign^a * L_foreign^(1-a);

end;

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 27 / 47

Loop directive (3/4)

Example: loop over several variables
@#define A = ["X", "Y", "Z"]
@#define B = [1, 2, 3]

model;
@#for (i,j) in A*B

e_@{i}_@{j} = ...
@#endfor
end;

This will loop over e_X_1, e_X_2, . . . , e_Z_3 (9 variables in total)

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 28 / 47

Loop directive (4/4)

Example: loop over several variables with filtering
model;
@#for (i,j,k) in (1:10)^3 when i^2+j^2==k^2

e_@{i}_@{j}_@{k} = ...
@#endfor
end;

This loop will iterate over only 4 triplets: (3,4,5), (4,3,5), (6,8,10), (8,6,10).

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 29 / 47

Conditional directives (1/3)

Syntax 1
@#if bool_or_real_expr

body included if expr is true (or != 0)
@#endif

Syntax 2
@#if bool_or_real_expr

body included if expr is true (or != 0)
@#else

body included if expr is false (or 0)
@#endif

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 30 / 47

Conditional directives (2/3)
Syntax 3
@#if bool_or_real_expr1

body included if expr1 is true (or != 0)
@#elseif bool_or_real_expr2

body included if expr2 is true (or != 0)
@#else

body included if expr1 and expr2 are false (or 0)
@#endif

Example: alternative monetary policy rules
@#define linear_mon_pol = false // or 0
...
model;
@#if linear_mon_pol

i = w*i(-1) + (1-w)*i_ss + w2*(pie-piestar);
@#else

i = i(-1)^w * i_ss^(1-w) * (pie/piestar)^w2;
@#endif
...
end;

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 31 / 47

Conditional directives (3/3)

Syntax 1
@#ifdef variable_name

body included if variable defined
@#endif

Syntax 2
@#ifdef variable_name

body included if variable defined
@#else

body included if variable not defined
@#endif

There is also @#ifndef, which is the opposite of @#ifdef (i.e. it tests whether a variable
is not defined).
NB: There is no @#elseifdef or @#elseifndef directive; use
elseif defined(variable_name) to achieve the desired objective.

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 32 / 47

Echo directives
The echo directive will simply display a message on standard output
The echomacrovars directive will display all of the macro variables (or those specified)
and their values
The save option allows saving this information to options_.macrovars_line_x, where
x denotes the line number where the statement was encountered

Syntax
@#echo string_expr
@#echomacrovars
@#echomacrovars list_of_variables
@#echomacrovars(save)
@#echomacrovars(save) list_of_variables

Examples
@#echo "Information message."

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 33 / 47

Error directive

The error directive will display the message and make Dynare stop (only makes sense
inside a conditional directive)

Syntax
@#error string_expr

Example
@#error "Error message!"

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 34 / 47

Macro-related command line options

savemacro: Useful for debugging or learning purposes, saves the output of the macro
processor. If your .mod file is called file.mod, the output is saved to
file_macroexp.mod.
NB: savemacro=filename allows a user-defined file name
linemacro: In the output of savemacro, print line numbers where the macro directives
were placed.
onlymacro: Stops processing after the macro processing step.

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 35 / 47

Outline

1 Overview

2 Syntax

3 Common uses

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 36 / 47

Modularization

The @#include directive can be used to split .mod files into several modular components
Example setup:
modeldesc.mod: contains variable declarations, model equations, and shock declarations
simulate.mod: includes modeldesc.mod, calibrates parameters, and runs stochastic

simulations
estim.mod: includes modeldesc.mod, declares priors on parameters, and runs Bayesian

estimation
Dynare can be called on simulate.mod and estim.mod
But it makes no sense to run it on modeldesc.mod
Advantage: no need to manually copy/paste the whole model (during initial development)
or port model changes (during development)

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 37 / 47

Indexed sums or products
Example: moving average

Before macro processing
@#define window = 2

var x MA_x;
...
model;
...
MA_x = @{1/(2*window+1)}*(
@#for i in -window:window

+x(@{i})
@#endfor

);
...
end;

After macro processing
var x MA_x;
...
model;
...
MA_x = 1/5*(

+x(-2)
+x(-1)
+x(0)
+x(1)
+x(2)

);
...
end;

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 38 / 47

Multi-country models
.mod file skeleton example

@#define countries = ["US", "EA", "AS", "JP", "RC"]
@#define nth_co = "US"

@#for co in countries
var Y_@{co} K_@{co} L_@{co} i_@{co} E_@{co} ...;
parameters a_@{co} ...;
varexo ...;
@#endfor

model;
@#for co in countries
Y_@{co} = K_@{co}^a_@{co} * L_@{co}^(1-a_@{co});

...
@# if co != nth_co
(1+i_@{co}) = (1+i_@{nth_co}) * E_@{co}(+1) / E_@{co}; // UIP relation

@# else
E_@{co} = 1;

@# endif
@#endfor
end;

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 39 / 47

Endogeneizing parameters (1/4)

When calibrating the model, it may be useful to pin down parameters by targeting
endogenous objects
Example:

yt =
(

α
1
ξ ℓ

1− 1
ξ

t + (1 − α)
1
ξ k

1− 1
ξ

t

) ξ
ξ−1

lab_ratt = wtℓt
ptyt

In the model, α is a (share) parameter, and lab_ratt is an endogenous variable
We observe that:

▶ setting a value for α is not straightforward!
▶ but we have real world data for lab_ratt
▶ it is clear that these two objects are economically linked

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 40 / 47

Endogeneizing parameters (2/4)

Therefore, when computing the steady state by solving the static model:
▶ we make α a variable and the steady state value lab_rat of the dynamic variable lab_ratt a

parameter
▶ we impose an economically sensible value for lab_rat
▶ the solution algorithm deduces the implied value for α

We call this method “variable flipping”, because it treats α as a variable and lab_rat as a
parameter for the purpose of the static model

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 41 / 47

Endogeneizing parameters (3/4)
Example implementation

File modeqs.mod:
▶ contains variable declarations and model equations
▶ For declaration of alpha and lab_rat:

@#if steady
var alpha;
parameter lab_rat;

@#else
parameter alpha;
var lab_rat;

@#endif

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 42 / 47

Endogeneizing parameters (4/4)
Example implementation

File steadystate.mod:
▶ begins with @#define steady = true
▶ followed by @#include "modeqs.mod"
▶ initializes parameters (including lab_rat, excluding alpha)
▶ computes steady state (using guess values for endogenous, including alpha)
▶ saves values of parameters and variables at steady-state in a file, using the

save_params_and_steady_state command
File simulate.mod:

▶ begins with @#define steady = false
▶ followed by @#include "modeqs.mod"
▶ loads values of parameters and variables at steady-state from file, using the

load_params_and_steady_state command
▶ computes simulations

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 43 / 47

MATLAB/Octave loops vs macro processor loops (1/3)
Suppose you have a model with a parameter ρ, and you want to make simulations for three
values: ρ = 0.8, 0.9, 1. There are several ways of doing this:

With a MATLAB/Octave loop
rhos = [0.8, 0.9, 1];
for i = 1:length(rhos)

set_param_value('rho',rhos(i));
stoch_simul(order=1);
if info(1)~=0

error('Simulation failed for parameter draw')
end

end

The loop is not unrolled
MATLAB/Octave manages the iterations
NB: always check whether the error flag info(1)==0 to prevent erroneously relying on
stale results from previous iterations

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 44 / 47

MATLAB/Octave loops vs macro processor loops (2/3)

With a macro processor loop (case 1)
rhos = [0.8, 0.9, 1];
@#for i in 1:3

set_param_value('rho',rhos(@{i}));
stoch_simul(order=1);
if info(1)~=0

error('Simulation failed for parameter draw')
end

@#endfor

Very similar to previous example
Loop is unrolled
Dynare macro processor manages the loop index but not the data array (rhos)

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 45 / 47

MATLAB/Octave loops vs macro processor loops (3/3)

With a macro processor loop (case 2)
@#for rho_val in [0.8, 0.9, 1]

set_param_value('rho',@{rho_val});
stoch_simul(order=1);
if info(1)~=0

error('Simulation failed for parameter draw')
end

@#endfor

Shorter syntax, since list of values directly given in the loop construct
NB: Array not stored as MATLAB/Octave variable, hence cannot be used in
MATLAB/Octave

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 46 / 47

Thanks for your attention!
Questions?

My email: sebastien@dynare.org

cba Copyright © 2008-2024 Dynare Team
License: Creative Commons Attribution-ShareAlike 4.0

Sébastien Villemot (Dynare Team) The Dynare Macro Processor 31 May 2024 47 / 47

http://creativecommons.org/licenses/by-sa/4.0/

	Overview
	Syntax
	Common uses

