Probably Too Little, Certainly Too Late. An Assessment of the Juncker Investment Plan

Mathilde Le Moigne¹ Francesco Saraceno^{2,3} Sébastien Villemot²

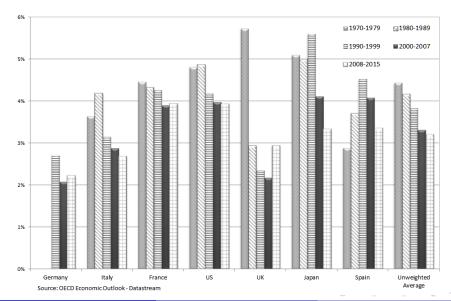
¹École Normale Supérieure

²OFCE - Sciences Po

3LUISS-SEP

University of Hamburg – 10 January 2017

Outline

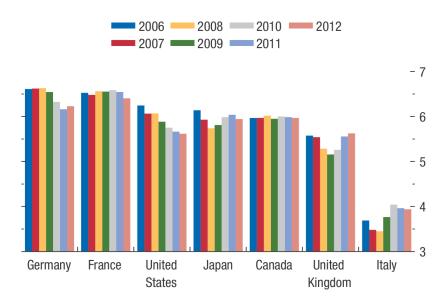

- The Model
- Simulating the Juncker Plan
- The Zero Lower Bound and the Juncker Plan
- 4 A comparison with the Obama 2009 plan
- Sensitivity analysis
- 6 Conclusion

Investment at historically low levels

- Total investment in 2015 still far below pre-crisis 2007 levels:
 - ▶ in EU, by 9% (in volume)
 - ▶ in EMU, by 11.9%
- Private investment low
 - because uncertainty and lack of global demand
 - despite historically low interest rates
- Public investment victim of consolidation policies
- Infrastructure insufficient or in poor condition

Public investment in selected OECD countries

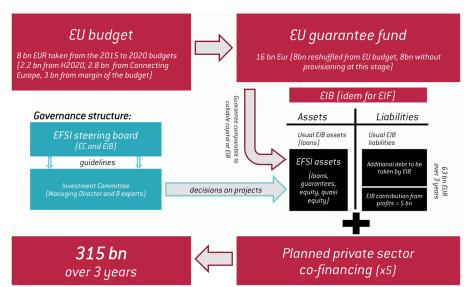
% of GDP



Public investment in France

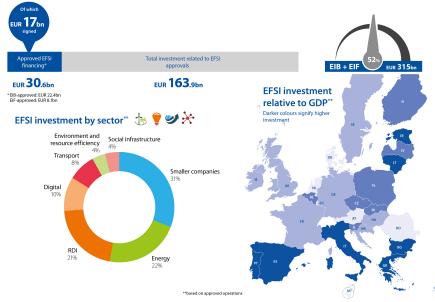
% of GDP

Infrastructure quality in selected OECD countries


Time for a public investment push?

- Combines two positive effects:
 - demand in the short run
 - supply in the longer run
- Crowding-in of private investment (via complementarities)
- Historically low interest rates
- Multipliers likely high, hence may be a free lunch (IMF, 2014; OECD, 2016)

The Juncker plan


- Official name: European Fund for Strategic Investment (EFSI)
- Operated by:
 - European Investment Bank (EIB)
 - European Investment Fund (EIF), for the SME part
- Public-private partnership financing scheme
- Objective: trigger €315bn of new investment in Europe over 3 years
- Aims at financing projects riskier than usual EIB projects
- Fields:
 - infrastructure
 - research & development
 - environmental projects
 - support to SMEs (through partnerships with intermediary banks)

The Working of the Juncker Plan

Source: Claeys (2015)

State of play as of December 2016

Source: EIB

Paper objectives

- Assess macro impact of Juncker plan through a DSGE model
- Both in "normal" times and in a liquidity trap
- Comparison with Obama 2009 plan

Main results

- Even under very favorable hypothesis, impact of Juncker plan moderate
- Had it been implemented earlier, could have been effective against ZLB ("certainly too late")
- Had it been bigger (of the Obama plan size), would have been effective against ZLB even today ("probably too little")
- Time-to-build and private leverage play critical roles

Outline

- The Model
- Simulating the Juncker Plan
- The Zero Lower Bound and the Juncker Plan
- 4 A comparison with the Obama 2009 plan
- Sensitivity analysis
- Conclusion

Structure

- Closed-economy model of euro area
- Medium-scale DSGE with New Keynesian core
- Two types of households (Ricardian/Keynesian or patient/impatient): consume, supply labor
- Productive sector with 3 factors: labor, private capital, public capital
- Monetary authority: Taylor rule
- Fiscal authority:
 - Several taxes, adjusted through fiscal rule
 - Discretionary public investment decision
 - Co-financing of projects by private sector: households contribute out of their savings

Households

- Two categories:
 - patient/savers/Ricardian with discount factor β^S impatient/borrowers/Keynesian with discount factor $\beta^B < \beta^S$
- Households maximize:

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta(i)^t \mu_t \left[\frac{\left(C_t(i) - h C_{t-1} \right)^{1-\sigma}}{1-\sigma} - \chi \frac{L_t(i)^{1+\epsilon}}{1+\epsilon} \right]$$

- external habit formation
- preference for leisure
- liquidity constraint on real debt:

$$\frac{B_t(i)}{P_t} \le D > 0 \tag{1}$$

ightharpoonup time rate preference shock μ_t : used to bring the economy at ZLB

- 4 ロ ト 4 個 ト 4 重 ト 4 重 ト 9 Q (*)

Patient Households (Savers) (1/2)

- Have access to financial markets:
 - can hold bonds issued by the government
 - can lend to firms investing in private capital
- Own the (intermediate good) firms, hence profits Π_t are part of their income
- Budget constraint in real terms:

$$(1 - \tau_t^w) w_t(i) L_t(i) + (1 - \tau_t^k) r_t^k K_{t-1}^S(i) + \frac{B_t^S(i)}{P_t} + \Pi_t =$$

$$(1 + i_{t-1}) \frac{B_{t-1}^S(i)}{P_t} + (1 + \tau_t^c) C_t^S(i) + I_t^S(i) +$$

$$I_t^{GS} + \psi(u_t(i)) \bar{K}_{t-1}^S(i) + \frac{\gamma^w}{2} \pi_t^w(i)^2 w_t(i)$$

Patient Households (Savers) (2/2)

Non standard elements

Households are wage-setters, with Rotemberg-type adjustment cost:

$$\frac{\gamma^w}{2}\pi_t^w(i)^2w_t$$

• Households invest $I_t^S(i)$ in private capital $\bar{K}_t^S(i)$, and decide the utilization intensity $u_t(i)$ (with convex adjustment cost). Thus:

$$K_t^{\mathcal{S}}(i) = u_t(i)\bar{K}_t^{\mathcal{S}}(i)$$

- ullet Patient households can also invest in the public capital stock: I_t^{GS}
 - not the result of optimization
 - but follows an ad hoc behavioral rule (proportional to public contribution)
 - investment in public capital does not yield any direct private return

Impatient Households (Borrowers)

- Impatient households have access to the financial markets in order to contract a debt or save. . .
- ... but cannot invest in private or public capital
- Because these agents are less patients than savers, they borrow up to their credit constraint, so that $\frac{B_t^B(i)}{P_t} = D$.
- As a consequence, the budget constraint simplifies to:

$$(1-\tau_t^w)w_t(i)L_t(i) = (1+\tau_t^c)C_t^B(i) + \left(\frac{1+i_{t-1}}{1+\pi_t}-1\right)D$$

• Same wage demand schedule as savers

Production

- The perfectly competitive final good sector produces for consumption, private investment and public investment.
- Inputs come from a monopolistically competitive intermediate sector.
 The intermediate sector drives the demand for labor, taking real wages as given.

The characterization of Final Goods is standard

$$\max_{y_t(j)} P_t Y_t - \int_0^1 p_t(j) y_t(j) \, \mathrm{d}j$$
s.t.
$$Y_t = \left(\int_0^1 y_t(j)^{\frac{\theta_t^p - 1}{\theta_t^p}} \, \mathrm{d}j \right)^{\frac{\theta_t^p}{\theta_t^p - 1}}$$

$$\Rightarrow y_t(j) = \left(\frac{p_t(j)}{P_t} \right)^{-\theta_t^p} Y_t$$

Intermediate Goods

Technology (Leeper et al, 2010):

$$y_t(j) = z_t K_{t-1}(j)^{\alpha} L_t(j)^{1-\alpha} \left(K_{t-1}^G\right)^{\nu}$$

- K_t^G is aggregate public capital, ν its productivity
- Rotemberg nominal price rigidities. Price adjustment cost: $\frac{\gamma^p}{2}\pi_t(i)^2Y_t$
- Cost minimization. Choice of $K_{t-1}(j)$ and $L_t(j)$ (given $y_s(t)$):

$$C(y_t(j)) = \min_{K_{t-1}(j), L_t(j)} w_t L_t(j) + r_t^k K_{t-1}(j)$$

s.t.
$$y_t(j) \leq F(K_{t-1}(j), L_t(j), K_{t-1}^G)$$

• Profit maximization. Joint choice of $p_s(j)$ and $y_s(j)$:

$$\max_{\rho_s(j)} \mathbb{E}_t \sum_{s=t}^{\infty} \left(\beta^S\right)^{s-t} \frac{\lambda_s^S}{\lambda_t^S} \left[\frac{p_s(j)}{P_s} y_s(j) - C(y_s(j)) - \frac{\gamma^p}{2} \pi_s(j)^2 Y_s \right]$$

s.t.
$$y_s(j) = \left(\frac{p_s(j)}{P_s}\right)^{-\theta_t^{\rho}} Y_s$$

Le Moigne, Saraceno, Villemot (OFCE) Probably Too Little, Certainly Too Late 20 / 51

Government

Budget constraint:

$$T_{t} + \frac{B_{t}^{G}}{P_{t}} = G_{t} + I_{t}^{G} + \frac{1 + i_{t-1}}{1 + \pi_{t}} \frac{B_{t-1}^{G}}{P_{t-1}}$$

$$T_{t} = \tau_{t}^{c} \left((1 - n)C_{t}^{S} + nC_{t}^{B} \right) + \tau_{t}^{w} w_{t} L_{t} + \tau_{t}^{k} r_{t}^{k} (1 - n)K_{t-1}^{S}$$

Fiscal rule (mimics the Stability and Growth Pact)

$$\Delta_t - r_t \frac{B_{t-1}^G}{P_{t-1}} = \Phi\left(\frac{B_{t-1}^G}{P_{t-1}} - b^{G^*}\right) - \varepsilon_t^G$$

$$\Delta_{t} = \tau_{t}^{c} \left((1 - n)C^{S^{*}} + nC^{B^{*}} \right) + \tau_{t}^{w} w^{*} L^{*} + \tau_{t}^{k} r^{k^{*}} (1 - n)K^{S^{*}} - G_{t} - I^{G^{*}}$$

 The different tax rates are (exogenously) proportional to total tax revenues

Public Investment: Time to Build and Leverage

- "Time-to-build". Choice of A_t yields a flow of expenditures for N periods: $A_t \sum_{s=0}^{N-1} \phi_s$
- Public investment comes from the government (A) and from patient households (A^S)
- At time t, total expenditure is the quota of all past decisions coming due:

$$I_t^G = \sum_{s=0}^{N-1} \phi_s A_{t-s}$$
 $I_t^{GS} = \sum_{s=0}^{N-1} \phi_s A_{t-s}^S$

The law of motion of capital:

$$K_t^G = (1 - \delta^G)K_{t-1}^G + A_{t-(N-1)} + (1 - n)A_{t-(N-1)}^S$$

with 1 - n fraction of patient households.

• Hypothesis on leverage triggered by government investment:

$$(1-n)A_t^S = (\xi-1)(A_t-A^*)$$

where $\xi \geq 1$ is the private leverage factor.

Monetary policy

The monetary authority follows a classical Taylor Rule, subject to a ZLB constraint:

$$1 + i_t = \max \left((1 + i_{t-1})^{\rho^i} \Big(\frac{1 + \pi_t}{1 + \pi^*} \Big)^{(1 - \rho^i)\phi_\pi} \Big(\frac{Y_t}{Y_{t-1}} \Big)^{(1 - \rho^i)\phi_Y} (1 + \varepsilon_t^i); \ 1 \right)$$

where $\rho^i \in [0,1)$ is the interest rate smoothing parameter, $\phi_{\pi} > 0$ (resp. $\phi_Y > 0$) captures the central bank reaction to inflation (resp. growth)

Model Closure: Market Clearing

The equilibrium on the final good market is given by

$$\begin{split} Y_t &= (1-n)C_t^S + nC_t^B + (1-n)(I_t^S + I_t^{GS}) + G + I_t^G \\ &+ \int_0^1 \frac{\gamma^p}{2} \pi_t(j)^2 Y_t \mathrm{d}j + \int_0^{1-n} \left[\frac{\gamma^w}{2} \pi_t^w(i)^2 w_t(i) + \psi(u_t(i)) \bar{K}_{t-1}^S(i) \right] \mathrm{d}i \end{split}$$

• Market clearing on markets for debt, private capital and labor, implies:

$$B_t^G + nD + \int_0^{1-n} B_t^S(i) di = 0$$
$$(1-n)K_t^S = \int_0^1 K_t(j) dj$$
$$L_t = \int_0^1 L_t(j) dj$$

- **ペロト ∢御 ト ∢ 恵 ト ∢ 恵 ト り** ♀ ○

Outline

- The Model
- Simulating the Juncker Plan
- The Zero Lower Bound and the Juncker Plan
- 4 A comparison with the Obama 2009 plan
- Sensitivity analysis
- Conclusion

Doubts about plan effectiveness

- EIB/EU contributions are not new money
- Optimistic private leverage effect
- Incitative impact not certain: some projects may have been launched without EFSI support
- Quality of projects in terms of productivity contribution?

We ignore these concerns and focus on the most favorable case.

Output elasticity of public capital

$$Y_{t} = z_{t} K_{t-1}^{\alpha} L_{t}^{\beta} \left(K_{t-1}^{\mathsf{G}} \right)^{\nu}$$

- Aschauer (1989b): $\nu = 0.24$ (core infrastructure in the US)
- ullet Eberts (1986): u= 0.03 (at metropolitan level in the US)
- IMF (2014): $\nu = 0.17$ (core infrastructure of national govt.)
- Our benchmark value: $\nu = 0.1$

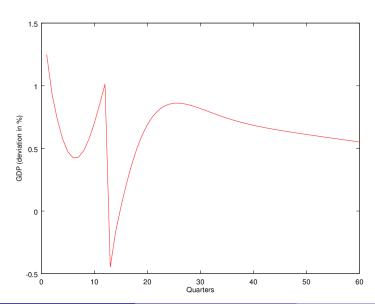
Calibrated parameters (1/2)

Share of borrowers	n	0.34
Private leverage factor of public investment	ξ	5
Preferences		
Discount rate of savers	$eta^{\mathcal{S}}$	0.995
Discount rate of borrowers	β^B	0.99
Disutility of labor	χ	1
Persistence of time rate preference	$ ho^{\mu}$	0.75
Production		
Private capital depreciation rate	δ^k	0.025
Public capital depreciation rate	δ^{G}	0.0125
Private capital share in production	α	0.36
Public capital influence in production	ν	0.1
Private capital utilization rate (steady state)	u*	0.85

Calibrated parameters (2/2)

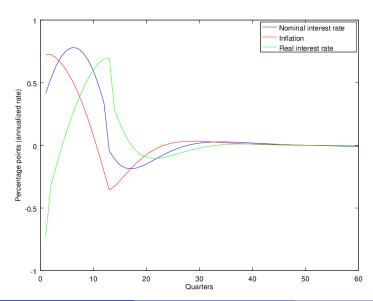
Price and wage stickiness		
Market power (goods, at steady state)	$ heta^{p*}$	6
Market power (labor, at steady state)	θ^{w*}	6.2
Monetary policy		
Inflation (steady state)	π^*	0
Fiscal policy		
Speed of fiscal consolidation	Φ	$\frac{1}{80}$
Debt target	b^{G^*}	2.4 <i>Y</i> *
Consumption tax (steady state)	$ au^{c*}$	0.2
Capital income tax (steady state)	$ au^{k^*}$	0.184
Time to build of public investment	Ν	12
Time profile of public investment	ϕ_{s}	$\frac{1}{N}$
Government consumption (steady state)	G^*	$0.25 Y^{*}$
Public investment (steady state)	\mathcal{A}^*	$0.02Y^*$
Debt constraint of borrowers	D	$0.125Y^*$

Estimated parameters

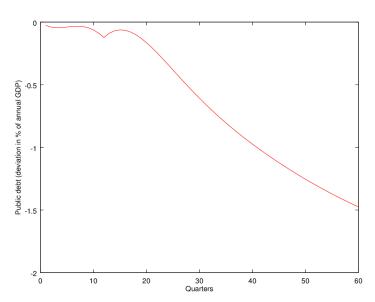

Parameter	Symbol		Prior		Posterior
		Type	Mean	St. Dev	mode
Preferences					
Frisch elasticity of labor	ε	Г	2	0.25	1.9200
Relative risk aversion	σ	Г	1.75	0.5	1.8951
Habit formation in consumption	h	β	0.5	0.2	0.8715
Production					
Adjustment cost on private investment	γ'	N	5	0.25	5.1858
Elasticity of capacity utilization rate	$\sigma_{\sf u}$	N	5	0.1	4.9879
Persistence of investment shock	$ ho^{\kappa}$	β	0.5	0.2	0.9042
Persistence of productivity shock	ρ^z	β	0.5	0.2	0.8476
Price and wage stickiness					
Adjustment cost on wages	γ^w	Г	110	100	353.5216
Adjustment cost on prices	γ^P	Г	300	100	83.5008
Persistence of price markup shock	ρ^{p}	β	0.5	0.2	0.8972
Persistence of wage markup shock	ρ^{w}	β	0.5	0.2	0.1187
Monetary policy	·				
Persistence of interest rate	$ ho^i$	β	0.8	0.1	0.8065
Sensitivity to inflation	ϕ_π	Γ	1.7	0.1	1.7292
Sensitivity to GDP	ϕ_Y	N	0.125	0.05	0.1766

The Juncker plan in the model

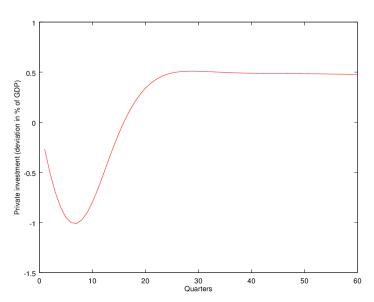
- Positive temporary shock on public investment allowances
- Magnitude: 0.5% of annual GDP (one-period shock during quarter of plan launching)
- Because of time-to-build, new investment spread over 3 years
- Magnified by private leverage of 5
- New public capital operational 3 years after plan launching


Impact of Juncker plan on output

Baseline scenario, deviation from steady state


Inflation and interest rates

Baseline scenario


Public debt-to-GDP ratio

Baseline scenario, deviation from steady state

Private investment

Baseline scenario, deviation from steady state

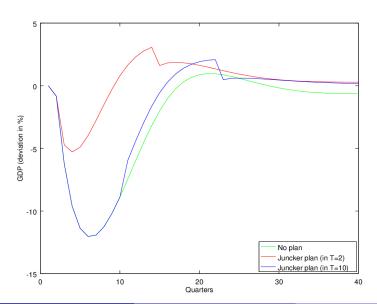
Dynamic multipliers

Baseline calibration

	1 year	3 years	10 years	20 years
Without leverage	1.0	0.8	2.2	4.1
With leverage of 5	5.2	4.2	13.0	24.0

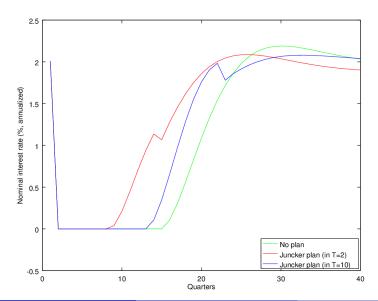
- The Model
- 2 Simulating the Juncker Plan
- 3 The Zero Lower Bound and the Juncker Plan
- 4 A comparison with the Obama 2009 plan
- Sensitivity analysis
- Conclusion

The dual effect of a public investment push


- Short run: demand effect, hence inflationary
- Long run: supply effect, hence deflationary
- Time-to-build governs relative timing of the two
- Bouakez et al. (2014): longer time-to-build beneficial in ZLB

Simulating a liquidity trap

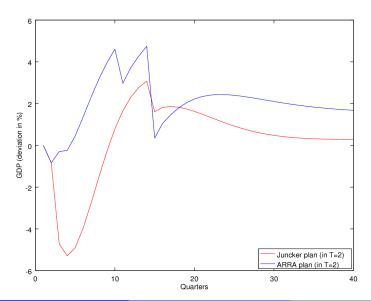
- Shock to time preference rate (negative demand shock)
- Solution method: extended path
- Multiple equilibria problem: equilibrium selection based on euro area experience
- Without government intervention
 - ZLB lasts 14 quarters
 - ▶ GDP through at 12% below pre-crisis level, 5 quarters after shock


Impact on GDP

ZLB case, deviation from steady state

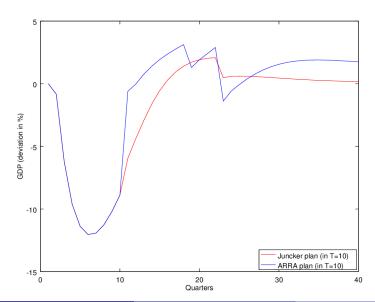
Nominal interest rate

ZLB case


- The Model
- Simulating the Juncker Plan
- The Zero Lower Bound and the Juncker Plan
- 4 A comparison with the Obama 2009 plan
- Sensitivity analysis
- Conclusion

The Obama plan

- American Recovery and Reinvestment Act (ARRA)
- \$789bn = 5.5% GDP
- 4% GDP over 2 years in tax breaks, 1.5% GDP public investment
- Quick implementation: voted Feb 2009, disbursements in summer


Impact of Juncker and Obama plans (in T=2)

ZLB case, deviation from steady state

Impact of Juncker and Obama plans (in T=10)

ZLB case, deviation from steady state

- The Model
- Simulating the Juncker Plan
- The Zero Lower Bound and the Juncker Plan
- 4 A comparison with the Obama 2009 plan
- Sensitivity analysis
- Conclusion

Sensitivity of dynamic multipliers

To elasticity of production to public capital

Elasticity (ν)	1 year	3 years	10 years	20 years
0	1.12	0.79	0.24	-0.08
0.05	1.07	0.78	1.21	1.98
0.10	1.02	0.77	2.19	4.05
0.15	0.97	0.76	3.17	6.13
0.17	0.95	0.76	3.57	6.96

Sensitivity to time-to-build

- Reducing time-to-build has two effects:
 - demand effect short-lived (crowding out disappears)
 - deflationary effect comes sooner (bad for ZLB exit)
- Last property (Bouakez et al., 2014) verified:
 - if TTB of 1 quarter, ZLB exit is postponed
 - if plan at T = 2, by 6 quarters (and recession worsened)
 - if plan at T = 10, by 1 quarter

Sensitivity to private leverage

- Fiscal multiplier = quasi-linear function of private leverage
- However non-linear impact on debt-to-GDP: increase if no private leverage
- Important for pulling economy out of ZLB. If no private leverage, multiple equilibria (for Juncker plan at T=2):
 - good equilibrium worse than with private leverage (2 more quarters in ZLB)
 - bad equilibrium: slightly worse than no government intervention (deflationary impact of public investment dominates)
- Policy conclusion: if private support does not follow expectations, need for bigger public involvment

- The Model
- Simulating the Juncker Plan
- The Zero Lower Bound and the Juncker Plan
- 4 A comparison with the Obama 2009 plan
- Sensitivity analysis
- 6 Conclusion

Conclusion

- Initial intuition of "too little and too late" confirmed
- Criticism could be rephrased as "probably too little, certainly too late"
- Member states announced plan extension on 6 December 2016 (€26 billion EU money instead of €16): acknowledgment of size problem, but still too late (spread over 2018-2022)
- Points to major flaw in European governance: rapidity of reaction
- Institutional architecture needs to be adapted to the post-"Great Moderation" world
- Limitations of our exercise: replication of the ZLB and of the plan complexity