Deterministic Models

Perfect foresight, nonlinearities and occasionally binding constraints

Sébastien Villemot
CEPREMAP
CENTRE POUR LA RECHERCHE ECONOMIQUE ET SES APPLICATIONS

June 4, 2019

Introduction

- Perfect foresight $=$ agents perfectly anticipate all future shocks
- Concretely, at period 1:
- agents learn the value of all future shocks;
- since there is shared knowledge of the model and of future shocks, agents can compute their optimal plans for all future periods;
- optimal plans are not adjusted in periods 2 and later \Rightarrow the model behaves as if it were deterministic.
- Cost of this approach: the effect of future uncertainty is not taken into account (e.g. no precautionary motive)
- Advantage: numerical solution can be computed exactly (up to rounding errors), contrarily to perturbation or global solution methods for rational expectations models
- In particular, nonlinearities fully taken into account (e.g. occasionally binding constraints)

Outline

(1) Presentation of the problem
(2) Solution techniques
(3) Shocks: temporary/permanent, unexpected/pre-announced

4 Occasionally binding constraints
(5) More unexpected shocks, extended path
(6) Dealing with nonlinearities using higher order approximation of stochastic models

Outline

(1) Presentation of the problem
(2) Solution techniques
(3) Shocks: temporary/permanent, unexpected/pre-announced

4 Occasionally binding constraints
(5) More unexpected shocks, extended path

6 Dealing with nonlinearities using higher order approximation of stochastic models

The (deterministic) neoclassical growth model

$$
\max _{\left\{c_{t}\right\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^{t-1} \frac{c_{t}^{1-\sigma}}{1-\sigma}
$$

s.t.

$$
c_{t}+k_{t}=A_{t} k_{t-1}^{\alpha}+(1-\delta) k_{t-1}
$$

First order conditions:

$$
\begin{aligned}
c_{t}^{-\sigma} & =\beta c_{t+1}^{-\sigma}\left(\alpha A_{t+1} k_{t}^{\alpha-1}+1-\delta\right) \\
c_{t}+k_{t} & =A_{t} k_{t-1}^{\alpha}+(1-\delta) k_{t-1}
\end{aligned}
$$

Steady state:

$$
\begin{aligned}
& \bar{k}=\left(\frac{1-\beta(1-\delta)}{\beta \alpha \bar{A}}\right)^{\frac{1}{\alpha-1}} \\
& \bar{c}=\bar{A} \bar{k}^{\alpha}-\delta \bar{k}
\end{aligned}
$$

Note the absence of stochastic elements!
No expectancy term, no probability distribution

Dynare code (1/3)

rcb_basic.mod
var c k;
varexo A;
parameters alpha beta gamma delta;
alpha=0.5;
beta=0.95;
gamma=0.5;
delta=0.02;
model;

$$
\begin{gathered}
c+\mathrm{k}=\mathrm{A} * \mathrm{k}(-1)^{\wedge} \mathrm{alpha}+(1-\text { delta }) * \mathrm{k}(-1) ; \\
\mathrm{c}^{\wedge}(- \text { gamma })=\text { beta } *(+1)^{\wedge}(- \text { gamma }) *\left(\mathrm{alpha} * \mathrm{~A}(+1) * \mathrm{k}^{\wedge}(\text { alpha-1) }+\right. \\
1-\operatorname{delta})
\end{gathered}
$$

end;

Dynare code $(2 / 3)$
rcb_basic.mod
// Steady state (analytically solved)
initval;
A = 1;
$\mathrm{k}=((1-\mathrm{beta} *(1-\mathrm{del} \mathrm{ta})) /(\mathrm{beta} * \mathrm{alpha*A}))^{\wedge}(1 /(\mathrm{alpha}-1))$;
c = A*k^alpha-delta*k;
end;
// Check that this is indeed the steady state steady;

Dynare code (3/3)

rcb_basic.mod
// Declare a positive technological shock in period 1 shocks; var A; periods 1; values 1.2;
end;
// Prepare the deterministic simulation over 100 periods perfect_foresight_setup(periods=100);
// Perform the simulation perfect_foresight_solver;
// Display the path of consumption rplot c;

Simulated consumption path

Plot of c

The general problem

Deterministic, perfect foresight, case:

$$
f\left(y_{t+1}, y_{t}, y_{t-1}, u_{t}\right)=0
$$

y : vector of endogenous variables
u : vector of exogenous shocks

Identification rule: as many endogenous (y) as equations (f)

Return to the neoclassical growth model

$$
\begin{gathered}
y_{t}=\binom{c_{t}}{k_{t}} \\
u_{t}=A_{t} \\
f\left(y_{t+1}, y_{t}, y_{t-1}, u_{t}\right)=\binom{c_{t}^{-\sigma}-\beta c_{t+1}^{-\sigma}\left(\alpha A_{t+1} k_{t}^{\alpha-1}+1-\delta\right)}{c_{t}+k_{t}-A_{t} k_{t-1}^{\alpha}+(1-\delta) k_{t-1}}
\end{gathered}
$$

What if more than one lead or one lag?

- A model with more than one lead or lag can be transformed in the form with one lead and one lag using auxiliary variables
- Transformation done automatically by Dynare
- For example, if there is a variable with two leads x_{t+2} :
- create a new auxiliary variable a
- replace all occurrences of x_{t+2} by a_{t+1}
- add a new equation: $a_{t}=x_{t+1}$
- Symmetric process for variables with more than one lag
- With future uncertainty, the transformation is more elaborate (but still possible) on variables with leads

Steady state

- A steady state, \bar{y}, for the model satisfies

$$
f(\bar{y}, \bar{y}, \bar{y}, \bar{u})=0
$$

- Note that a steady state is conditional to:
- The steady state values of exogenous variables \bar{u}
- The value of parameters (implicit in the above definition)
- Even for a given set of exogenous and parameter values, some (nonlinear) models have several steady states
- The steady state is computed by Dynare with the steady command
- That command internally uses a nonlinear solver

A two-boundary value problem

- Stacked system for a perfect foresight simulation over T periods:

$$
\left\{\begin{array}{c}
f\left(y_{2}, y_{1}, y_{0}, u_{1}\right)=0 \\
f\left(y_{3}, y_{2}, y_{1}, u_{2}\right)=0 \\
\vdots \\
f\left(y_{T+1}, y_{T}, y_{T-1}, u_{T}\right)=0
\end{array}\right.
$$

for y_{0} and y_{T+1} given.

- Compact representation:

$$
F(Y)=0
$$

where $Y=\left[\begin{array}{llll}y_{1}^{\prime} & y_{2}^{\prime} & \ldots & y_{T}^{\prime}\end{array}\right]^{\prime}$
and $y_{0}, y_{T+1}, u_{1} \ldots u_{T}$ are implicit

- Resolution uses a Newton-type method on the stacked system

Approximating infinite-horizon problems

- The above technique numerically computes trajectories for given shocks over a finite number of periods
- Suppose you are rather interested in solving an infinite-horizon problem
- One option consists in computing the recursive policy function (as with perturbation methods), but this is challenging
- in the general case, this function is defined over an infinite-dimensional space (because all future shocks are state variables)
- in the particular case of a return to equilibrium, the state-space is finite (starting from the date where all shocks are zero), but a projection method would still be needed
- in any case, Dynare does not do that
- An easier way, in the case of a return to equilibrium, is to approximate the solution by a finite-horizon problem
- consists in computing the trajectory with $y_{T+1}=\bar{y}$ and T large enough
- drawback compared to the policy function approach: the solution is specific to a given sequence of shocks, and not generic

Outline

(1) Presentation of the problem
(2) Solution techniques
(3) Shocks: temporary/permanent, unexpected/pre-announced

4 Occasionally binding constraints
(5) More unexpected shocks, extended path
(6) Dealing with nonlinearities using higher order approximation of stochastic models

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (unidimensional)

Copyright © 2005 Ralf Pfeifer / Creative Commons Attribution-ShareAlike 3.0

The Newton method (multidimensional)

- Start from an initial guess $Y^{(0)}$
- Iterate. Updated solutions $Y^{(k+1)}$ are obtained by solving a linear system:

$$
F\left(Y^{(k)}\right)+\left[\frac{\partial F}{\partial Y}\right]\left(Y^{(k+1)}-Y^{(k)}\right)=0
$$

- Terminal condition:

$$
\left\|Y^{(k+1)}-Y^{(k)}\right\|<\varepsilon_{Y}
$$

or

$$
\left\|F\left(Y^{(k)}\right)\right\|<\varepsilon_{F}
$$

- Convergence may never happen if function is ill-behaved or initial guess $Y^{(0)}$ too far from a solution
\Rightarrow to avoid an infinite loop, abort after a given number of iterations

Controlling the Newton algorithm from Dynare

The following options to the perfect_foresight_solver can be used to control the Newton algorithm:
maxit Maximum number of iterations before aborting (default: 50) tolf Convergence criterion based on function value $\left(\varepsilon_{F}\right)$ (default: 10^{-5})
tolx Convergence criterion based on change in the function argument (ε_{Y}) (default: 10^{-5})
stack_solve_algo select between the different flavors of Newton algorithms (see thereafter)

A practical difficulty

The Jacobian can be very large: for a simulation over T periods of a model with n endogenous variables, it is a matrix of dimension $n T \times n T$.

Three alternative ways of dealing with the large problem size:

- Exploit the particular structure of the Jacobian using a relaxation technique developped by Laffargue, Boucekkine and Juillard (was the default method in Dynare ≤ 4.2)
- Handle the Jacobian as one large, sparse, matrix (now the default method)
- Block decomposition, which is a divide-and-conquer method, implemented by Mihoubi

Shape of the Jacobian

$$
\frac{\partial F}{\partial Y}=\left(\begin{array}{ccccccc}
B_{1} & C_{1} & & & & & \\
A_{2} & B_{2} & C_{2} & & & & \\
& \ddots & \ddots & \ddots & & & \\
& & A_{t} & B_{t} & C_{t} & & \\
& & & \ddots & \ddots & \ddots & \\
& & & & A_{T-1} & B_{T-1} & C_{T-1} \\
& & & & & A_{T} & B_{T}
\end{array}\right)
$$

where

$$
\begin{aligned}
A_{s} & =\frac{\partial f}{\partial y_{t-1}}\left(y_{s+1}, y_{s}, y_{s-1}\right) \\
B_{s} & =\frac{\partial f}{\partial y_{t}}\left(y_{s+1}, y_{s}, y_{s-1}\right) \\
C_{s} & =\frac{\partial f}{\partial y_{t+1}}\left(y_{s+1}, y_{s}, y_{s-1}\right)
\end{aligned}
$$

Relaxation (1/5)

The idea is to triangularize the stacked system:

$$
\left(\begin{array}{cccccc}
B_{1} & C_{1} & & & & \\
A_{2} & B_{2} & C_{2} & & & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& & & A_{T-1} & B_{T-1} & C_{T-1} \\
& & & & A_{T} & B_{T}
\end{array}\right) \Delta Y=-\left(\begin{array}{c}
f\left(y_{2}, y_{1}, y_{0}, u_{1}\right) \\
f\left(y_{3}, y_{2}, y_{1}, u_{2}\right) \\
\vdots \\
\vdots \\
f\left(y_{T}, y_{T-1}, y_{T}, u_{T-1}\right) \\
f\left(y_{T+1}, y_{T}, y_{T-1}, u_{T}\right)
\end{array}\right)
$$

Relaxation (2/5)

First period is special:

$$
\left(\begin{array}{cccccc}
l & D_{1} & & & & \\
& B_{2}-A_{2} D_{1} & C_{2} & & & \\
& A_{3} & B_{3} & C_{3} & & \\
& & \ddots & \ddots & \ddots & \\
& & & A_{T-1} & B_{T-1} & C_{T-1} \\
& & & & A_{T} & B_{T}
\end{array}\right) \Delta Y=-\left(\begin{array}{c}
d_{1} \\
f\left(y_{3}, y_{2}, y_{1}, u_{2}\right)+A_{2} d_{1} \\
f\left(y_{4}, y_{3}, y_{2}, u_{3}\right) \\
\vdots \\
\\
\end{array}\right.
$$

where

- $D_{1}=B_{1}^{-1} C_{1}$
- $d_{1}=B_{1}^{-1} f\left(y_{2}, y_{1}, y_{0}, u_{1}\right)$

Relaxation (3/5)

Normal iteration:

$$
\left(\begin{array}{cccccc}
l & D_{1} & & & & \\
& I & D_{2} & & & \\
& & B_{3}-A_{3} D_{2} & C_{3} & & \\
& & \ddots & \ddots & \ddots & \\
& & & A_{T-1} & B_{T-1} & C_{T-1} \\
& & & & A_{T} & B_{T}
\end{array}\right) \Delta Y=-\left(\begin{array}{c}
d_{1} \\
d_{2} \\
f\left(y_{4}, y_{3}, y_{2}, u_{3}\right)+A_{3} d_{2} \\
\vdots \\
f\left(y_{T}, y_{T-1}, y_{T}, u_{T-1}\right) \\
f\left(y_{T+1}, y_{T}, y_{T-1}, u_{T}\right)
\end{array}\right)
$$

where

- $D_{2}=\left(B_{2}-A_{2} D_{1}\right)^{-1} C_{2}$
- $d_{2}=\left(B_{2}-A_{2} D_{1}\right)^{-1}\left(f\left(y_{3}, y_{2}, y_{1}, u_{2}\right)+A_{2} d_{1}\right)$

Relaxation (4/5)

Final iteration:

$$
\left(\begin{array}{cccccc}
l & D_{1} & & & & \\
& l & D_{2} & & & \\
& & l & D_{3} & & \\
& & & \ddots & \ddots & \\
& & & & l & D_{T-1} \\
& & & & & l
\end{array}\right) \Delta Y=-\left(\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
\vdots \\
d_{T-1} \\
d_{T}
\end{array}\right)
$$

where

$$
d_{T}=\left(B_{T}-A_{T} D_{T-1}\right)^{-1}\left(f\left(y_{T+1}, y_{T}, y_{T-1}, u_{T}\right)+A_{T} d_{T-1}\right)
$$

Relaxation (5/5)

- The system is then solved by backward iteration:

$$
\begin{gathered}
y_{T}^{k+1}=y_{T}^{k}-d_{T} \\
y_{T-1}^{k+1}=y_{T-1}^{k}-d_{T-1}-D_{T-1}\left(y_{T}^{k+1}-y_{T}^{k}\right) \\
\vdots \\
y_{1}^{k+1}=y_{1}^{k}-d_{1}-D_{1}\left(y_{2}^{k+1}-y_{2}^{k}\right)
\end{gathered}
$$

- No need to ever store the whole Jacobian: only the D_{s} and d_{s} have to be stored
- This technique is memory efficient (was the default method in Dynare ≤ 4.2 for this reason)
- Still available as option stack_solve_algo=6 of perfect_foresight_solver command

Sparse matrices $(1 / 3)$

- Consider the following matrix with most elements equal to zero:

$$
A=\left(\begin{array}{ccc}
0 & 0 & 2.5 \\
-3 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- Dense matrix storage (in column-major order) treats it as a one-dimensional array:

$$
[0,-3,0,0,0,0,2.5,0,0]
$$

- Sparse matrix storage:
- views it as a list of triplets (i, j, v) where (i, j) is a matrix coordinate and v a non-zero value
- A would be stored as

$$
\{(2,1,-3),(1,3,2.5)\}
$$

Sparse matrices $(2 / 3)$

- In the general case, given an $m \times n$ matrix with k non-zero elements:
- dense matrix storage $=8 m n$ bytes
- sparse matrix storage $=16 k$ bytes
- sparse storage more memory-efficient as soon as $k<m n / 2$ (assuming 32-bit integers and 64-bit floating point numbers)
- In practice, sparse storage becomes interesting if $k \ll m n / 2$, because linear algebra algorithms are vectorized

Sparse matrices $(3 / 3)$

- The Jacobian of the deterministic problem is a sparse matrix:
- Lots of zero blocks
- The A_{s}, B_{s} and C_{s} usually are themselves sparse
- Family of optimized algorithms for sparse matrices (including matrix inversion for our Newton algorithm)
- Available as native objects in MATLAB/Octave (see the sparse command)
- Works well for medium size deterministic models
- Nowadays more efficient than relaxation, even though it does not exploit the particular structure of the Jacobian \Rightarrow now the default method in Dynare (stack_solve_algo=0)

Block decomposition (1/3)

- Idea: apply a divide-and-conquer technique to model simulation
- Principle: identify recursive and simultaneous blocks in the model structure
- First block (prologue): equations that only involve variables determined by previous equations; example: AR(1) processes
- Last block (epilogue): pure output/reporting equations
- In between: simultaneous blocks, that depend recursively on each other
- The identification of the blocks is performed through a matching between variables and equations (normalization), then a reordering of both

Block decomposition (2/3)

Form of the reordered Jacobian (equations in lines, variables in columns)

Block decomposition (3/3)

- Can provide a significant speed-up on large models
- Implemented in Dynare by Ferhat Mihoubi
- Available as option block to the model command
- Bigger gains when used in conjunction with bytecode option

Homotopy

- Another divide-and-conquer method, but in the shocks dimension
- Useful if shocks so large that convergence does not occur
- Idea: achieve convergence on smaller shock size, then use the result as starting point for bigger shock size
- Algorithm:
(1) Starting point for simulation path: steady state at all t
(2) $\lambda \leftarrow 0$: scaling factor of shocks (simulation succeeds when $\lambda=1$)
(3) $s \leftarrow 1$: step size
(9) Try to compute simulation with shocks scaling factor equal to $\lambda+s$ (using last successful computation as starting point)
\star If success: $\lambda \leftarrow \lambda+s$. Stop if $\lambda=1$. Otherwise possibly increase s.
\star If failure: diminish s.
(3) Go to 4
- Can be combined with any deterministic solver
- Used by default by perfect_foresight_solver (can be disabled with option no_homotopy)

Outline

(1) Presentation of the problem
(2) Solution techniques
(3) Shocks: temporary/permanent, unexpected/pre-announced

4 Occasionally binding constraints
(5) More unexpected shocks, extended path
(6) Dealing with nonlinearities using higher order approximation of stochastic models

Example: neoclassical growth model with investment

The social planner problem is as follows:

$$
\max _{\left\{c_{t+j}, \ell_{t+j}, k_{t+j}\right\}_{j=0}^{\infty}} \mathbb{E}_{t} \sum_{j=0}^{\infty} \beta^{j} u\left(c_{t+j}, \ell_{t+j}\right)
$$

s.t.

$$
\begin{gathered}
y_{t}=c_{t}+i_{t} \\
y_{t}=A_{t} f\left(k_{t-1}, \ell_{t}\right) \\
k_{t}=i_{t}+(1-\delta) k_{t-1} \\
A_{t}=A^{\star} e^{a_{t}} \\
a_{t}=\rho a_{t-1}+\varepsilon_{t}
\end{gathered}
$$

where ε_{t} is an exogenous shock.

Specifications

- Utility function:

$$
u\left(c_{t}, \ell_{t}\right)=\frac{\left(c_{t}^{\theta}\left(1-\ell_{t}\right)^{1-\theta}\right)^{1-\tau}}{1-\tau}
$$

- Production function:

$$
f\left(k_{t-1}, \ell_{t}\right)=\left(\alpha k_{t-1}^{\psi}+(1-\alpha) \ell_{t}^{\psi}\right)^{\frac{1}{\psi}}
$$

First order conditions

- Euler equation:

$$
u_{c}\left(c_{t}, \ell_{t}\right)=\beta \mathbb{E}_{t}\left[u_{c}\left(c_{t+1}, \ell_{t+1}\right)\left(A_{t+1} f_{k}\left(k_{t}, \ell_{t+1}\right)+1-\delta\right)\right]
$$

- Arbitrage between consumption and leisure:

$$
\frac{u_{\ell}\left(c_{t}, \ell_{t}\right)}{u_{c}\left(c_{t}, \ell_{t}\right)}+A_{t} f_{\ell}\left(k_{t-1}, \ell_{t}\right)=0
$$

- Resource constraint:

$$
c_{t}+k_{t}=A_{t} f\left(k_{t-1}, \ell_{t}\right)+(1-\delta) k_{t-1}
$$

Dynare code (1/3)

```
var k, y, L, c, A, a;
varexo epsilon;
parameters beta, theta, tau, alpha, psi, delta, rho, Astar;
beta = 0.9900;
theta = 0.3570;
tau = 2.0000;
alpha = 0.4500;
psi = -0.1000;
delta = 0.0200;
rho = 0.8000;
Astar = 1.0000;
```


Dynare code $(2 / 3)$

model;

```
    a = rho*a(-1) + epsilon;
    A = Astar*exp(a);
    y = A*(alpha*k(-1)^psi+(1-alpha)*L^psi)^(1/psi);
    k = y-c + (1-delta)*k(-1);
    (1-theta)/theta*c/(1-L) - (1-alpha)*(y/L)^(1-psi);
    (c^theta*(1-L)^(1-theta))^(1-tau)/c =
        beta*(c(+1)^theta*(1-L(+1))^(1-theta))^(1-tau)/c(+1)
        *(alpha*(y(+1)/k)^(1-psi)+1-delta);
end;
```


Dynare code (3/3)

```
steady_state_model;
    a = epsilon/(1-rho);
    A = Astar*exp(a);
    Output_per_unit_of_Capital=((1/beta-1+delta)/alpha) ^(1/(1-psi));
    Consumption_per_unit_of_Capital=Output_per_unit_of_Capital-delta;
    Labour_per_unit_of_Capital=(((Output_per_unit_of_Capital/A)^psi-alpha)
                        /(1-alpha)) (1/psi);
    Output_per_unit_of_Labour=Output_per_unit_of_Capital/Labour_per_unit_of_Capital;
    Consumption_per_unit_of_Labour=Consumption_per_unit_of_Capital
                                    /Labour_per_unit_of_Capital;
    % Compute steady state of the endogenous variables.
    L=1/(1+Consumption_per_unit_of_Labour/((1-alpha)*theta/(1-theta)
                                    *Output_per_unit_of_Labour^(1-psi)));
    c=Consumption_per_unit_of_Labour*L;
    k=L/Labour_per_unit_of_Capital;
    y=Output_per_unit_of_Capital*k;
end;
```


Scenario 1: Return to equilibrium

Return to equilibrium starting from $k_{0}=0.5 \bar{k}$.

```
Fragment from rbc_det1.mod
steady;
ik = varlist_indices('k',M_.endo_names);
kstar = oo_.steady_state(ik);
histval;
    k(0) = kstar/2;
end;
perfect_foresight_setup(periods=300);
perfect_foresight_solver;
```


Scenario 2: A temporary shock to TFP

- The economy starts from the steady state
- There is an unexpected negative shock at the beginning of period 1 : $\varepsilon_{1}=-0.1$

```
Fragment from rbc_det2.mod
steady;
shocks;
    var epsilon;
    periods 1;
    values -0.1;
end;
perfect_foresight_setup(periods=300);
perfect_foresight_solver;
```


Scenario 3: Pre-announced favorable shocks in the future

- The economy starts from the steady state
- There is a sequence of positive shocks to $A_{t}: 4 \%$ in period 5 and an additional 1% during the 4 following periods

```
Fragment from rbc_det3.mod
steady;
shocks;
    var epsilon;
    periods 4, 5:8;
    values 0.04, 0.01;
end;
perfect_foresight_setup(periods=300);
perfect_foresight_solver;
```


Scenario 4: A permanent shock

- The economy starts from the initial steady state $\left(a_{0}=0\right)$
- In period 1, TFP increases by 5% permanently (and this was unexpected)

Fragment from rbc_det4.mod
initval; epsilon $=0$;
end;
steady;
endval;
epsilon $=(1-r h o) * \log (1.05)$;
end;
steady;

Scenario 5: A pre-announced permanent shock

- The economy starts from the initial steady state $\left(a_{0}=0\right)$
- In period 6, TFP increases by 5\% permanently
- A shocks block is used to maintain TFP at its initial level during periods 1-5

Fragment from rbc_det5.mod

// Same initval and endval blocks as in Scenario 4
shocks;
var epsilon;
periods 1:5;
values 0;
end;

Summary of commands

initval for the initial steady state (followed by steady)
endval for the terminal steady state (followed by steady)
histval for initial or terminal conditions out of steady state
shocks for shocks along the simulation path perfect_foresight_setup prepare the simulation perfect_foresight_solver compute the simulation
simul do both operations at the same time (deprecated syntax, alias for perfect_foresight_setup + perfect_foresight_solver)

Under the hood

- The paths for exogenous and endogenous variables are stored in two MATLAB/Octave matrices:

$$
\begin{aligned}
& \text { oo_. endo_simul }^{\prime}=\left(\begin{array}{ccccc}
y_{0} & y_{1} & \cdots & y_{T} & y_{T+1}
\end{array}\right) \\
& \text { oo_.exo_simul' }
\end{aligned}=\left(\begin{array}{cccc}
\boxtimes & u_{1} & \ldots & u_{T} \\
\boxtimes
\end{array}\right)
$$

- perfect_foresight_setup initializes those matrices, given the shocks, initval, endval and histval blocks
- y_{0}, y_{T+1} and $u_{1} \ldots u_{T}$ are the constraints of the problem
- $y_{1} \ldots y_{T}$ are the initial guess for the Newton algorithm
- perfect_foresight_solver replaces $y_{1} \ldots y_{T}$ in oo_.endo_simul by the solution
- Notes:
- for historical reasons, dates are in columns in oo_.endo_simul and in lines in oo_.exo_simul, hence the transpose (') above
- this is the setup for no lead and no lag on exogenous
- if one lead and/or one lag, u_{0} and/or u_{T+1} would become relevant
- if more than one lead and/or lag, matrices would be larger

Initial guess

The Newton algorithm needs an initial guess $Y^{(0)}=\left[y_{1}^{(0)^{\prime}} \ldots y_{T}^{(0)^{\prime}}\right]$.
What is Dynare using for this?

- By default, if there is no endval block, it is the steady state as specified by initval (repeated for all simulations periods)
- Or, if there is an endval block, then it is the final steady state declared within this block
- Possibility of customizing this default by manipulating oo_.endo_simul after perfect_foresight_setup (but of course before perfect_foresight_solver!)
- If homotopy is triggered, the initial guess of subsequent iterations is the result of the previous iteration

Alternative way of specifying terminal conditions

- With the differentiate_forward_vars option of the model block, Dynare will substitute forward variables using new auxiliary variables:
- Substitution: $x_{t+1} \rightarrow x_{t}+a_{t+1}$
- New equation: $a_{t}=x_{t+1}-x_{t}$
- If the terminal condition is a steady state, the new auxiliary variables have obvious zero terminal condition
- Useful when:
- the final steady state is hard to compute (this transformation actually provides a way to find it)
- the model is very persistent and takes time to go back to steady state (this transformation avoids a kink at the end of the simulation if T is not large enough)

Outline

(1) Presentation of the problem
(2) Solution techniques
(3) Shocks: temporary/permanent, unexpected/pre-announced

4 Occasionally binding constraints
(5) More unexpected shocks, extended path
(6) Dealing with nonlinearities using higher order approximation of stochastic models

Zero nominal interest rate lower bound

- Implemented by writing the law of motion under the following form in Dynare:

$$
i_{t}=\max \left\{0,\left(1-\rho_{i}\right) i^{*}+\rho_{i} i_{t-1}+\rho_{\pi}\left(\pi_{t}-\pi^{*}\right)+\varepsilon_{t}^{i}\right\}
$$

- Warning: this form will be accepted in a stochastic model, but the constraint will not be enforced in that case!

Irreversible investment

Same model as above, but the social planner is constrained to positive investment paths:

$$
\max _{\left\{c_{t+j}, \ell_{t+j}, k_{t+j}\right\}_{j=0}^{\infty}} \sum_{j=0}^{\infty} \beta^{j} u\left(c_{t+j}, \ell_{t+j}\right)
$$

s.t.

$$
\begin{gathered}
y_{t}=c_{t}+i_{t} \\
y_{t}=A_{t} f\left(k_{t-1}, \ell_{t}\right) \\
k_{t}=i_{t}+(1-\delta) k_{t-1} \\
i_{t} \geq 0 \\
A_{t}=A^{\star} e^{a_{t}} \\
a_{t}=\rho a_{t-1}+\varepsilon_{t}
\end{gathered}
$$

where the technology (f) and the preferences (u) are as above.

First order conditions

$$
\begin{gathered}
u_{c}\left(c_{t}, \ell_{t}\right)-\mu_{t}=\beta \mathbb{E}_{t}\left[u _ { c } (c _ { t + 1 } , \ell _ { t + 1 }) \left(A_{t+1} f_{k}\left(k_{t}, \ell_{t+1}\right)\right.\right. \\
+1-\delta) \\
\\
\left.-\mu_{t+1}(1-\delta)\right] \\
\frac{u_{\ell}\left(c_{t}, \ell_{t}\right)}{u_{c}\left(c_{t}, \ell_{t}\right)}+A_{t} f_{l}\left(k_{t-1}, \ell_{t}\right)=0 \\
c_{t}+k_{t}=A_{t} f\left(k_{t-1}, \ell_{t}\right)+(1-\delta) k_{t-1}
\end{gathered}
$$

Slackness condition:

$$
\begin{gathered}
\mu_{t}=0 \text { and } i_{t} \geq 0 \\
\text { or } \\
\mu_{t}>0 \text { and } i_{t}=0
\end{gathered}
$$

where $\mu_{t} \geq 0$ is the Lagrange multiplier associated to the non-negativity constraint for investment.

Mixed complementarity problems

- A mixed complementarity problem (MCP) is given by:
- function $F(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- lower bounds $\ell_{i} \in \mathbb{R} \cup\{-\infty\}$
- upper bounds $u_{i} \in \mathbb{R} \cup\{+\infty\}$
- A solution of the MCP is a vector $x \in \mathbb{R}^{n}$ such that for each $i \in\{1 \ldots n\}$, one of the following alternatives holds:
- $\ell_{i}<x_{i}<u_{i}$ and $F_{i}(x)=0$
- $x_{i}=\ell_{i}$ and $F_{i}(x) \geq 0$
- $x_{i}=u_{i}$ and $F_{i}(x) \leq 0$
- Notation:

$$
\ell \leq x \leq u \perp F(x)
$$

- Solving a square system of nonlinear equations is a particular case (with $\ell_{i}=-\infty$ and $u_{i}=+\infty$ for all i)
- Optimality problems with inequality constraints are naturally expressed as MCPs (finite bounds are imposed on Lagrange multipliers)

The irreversible investment model in Dynare

- MCP solver triggered with option 1 mmcp of perfect_foresight_solver
- Slackness condition described by equation tag mcp

```
Fragment from rbcii.mod
(c^theta*(1-L)^(1-theta))^(1-tau)/c - mu =
beta*((c(+1)^theta*(1-L(+1))^(1-theta))^(1-tau)/c(+1)
*(alpha*(y(+1)/k)^(1-psi)+1-delta)-mu(+1)*(1-delta));
[ mcp = 'i > 0' ]
mu = 0;
```

perfect_foresight_setup(periods=400) ;
perfect_foresight_solver(lmmcp, maxit=200);

Outline

(1) Presentation of the problem
(2) Solution techniques
(3) Shocks: temporary/permanent, unexpected/pre-announced

4 Occasionally binding constraints
(5) More unexpected shocks, extended path
(6) Dealing with nonlinearities using higher order approximation of stochastic models

Simulating unexpected shocks

With a perfect foresight solver:

- shocks are unexpected in period 1
- but in subsequent periods they are anticipated

How to simulate an unexpected shock at a period $t>1$?

- Do a perfect foresight simulation from periods 0 to T without the shock
- Do another perfect foresight simulation from periods t to T
- applying the shock in t,
- and using the results of the first simulation as initial condition
- Combine the two simulations:
- use the first one for periods 1 to $t-1$,
- and the second one for t to T

A Dynare example $(1 / 2)$

Simulation of a scenario with:

- Pre-announced (negative) shocks in periods 5 and 15
- Unexpected (positive) shock in period 10

From rbc_unexpected.mod:
// Declare pre-announced shocks shocks; var epsilon; periods 5, 15; values -0.1, -0.1; end; perfect_foresight_setup(periods=300); perfect_foresight_solver;

A Dynare example $(2 / 2)$

```
// Declare unexpected shock (after first simulation!) oo_.exo_simul(11, 1) = 0.1; // Period 10 has index 11!
```

// Strip first 9 periods and save them saved_endo = oo_.endo_simul(:, 1:9); // Save periods 0 to 8 saved_exo = oo_.exo_simul(1:9, :); oo_.endo_simul = oo_.endo_simul(:, 10:end); // Keep periods 9 oo_.exo_simul = oo_.exo_simul(10:end, :);
periods 291;
perfect_foresight_solver;
// Combine the two simulations oo_.endo_simul = [saved_endo oo_.endo_simul]; oo_.exo_simul = [saved_exo; oo_.exo_simul];

Consumption path

Extended path (EP) algorithm

- Generalization of the previous method, where unexpected shocks may happen in all periods
- At every period, compute endogenous variables by running a deterministic simulation with:
- the previous period as initial condition
- the steady state as terminal condition
- a random shock drawn for the current period
- but no shock in the future
- Advantages:
- shocks are unexpected at every period
- nonlinearities fully taken into account
- Inconvenient: solution under certainty equivalence (Jensen inequality is violated)
- Method introduced by Fair and Taylor (1983)
- Implemented under the command extended_path (with option order $=0$, which is the default)

Extended path in Dynare

From rbc_ep.mod:
// Declare shocks as in a stochastic setup shocks; var epsilon; stderr 0.02; end;
extended_path(periods=300);
// Plot 20 first periods of consumption ic = varlist_indices('c', M_.endo_names); plot(oo_.endo_simul(ic, 1:21));

k-step ahead extended path

- Accuracy can be improved by computing conditional expectation by quadrature, computing next period endogenous variables with the previous algorithm
- Approximation: at date t, agents assume that there will be no more shocks after period $t+k$ (hence k measures the degree of future uncertainty taken into account)
- If $k=1$: one-step ahead EP; no more certainty equivalence
- By recurrence, one can compute a k-step ahead EP: even more uncertainty taken into account
- Difficulty: computing complexity grows exponentially with k
- k-step ahead EP triggered with option order $=\mathrm{k}$ of extended_path command

Outline

(1) Presentation of the problem
(2) Solution techniques
(3) Shocks: temporary/permanent, unexpected/pre-announced

4 Occasionally binding constraints
(5) More unexpected shocks, extended path
(6) Dealing with nonlinearities using higher order approximation of stochastic models

Local approximation of stochastic models

The general problem:

$$
\mathbb{E}_{t} f\left(y_{t+1}, y_{t}, y_{t-1}, u_{t}\right)=0
$$

y : vector of endogenous variables
u : vector of exogenous shocks
with:

$$
\begin{aligned}
\mathbb{E}\left(u_{t}\right) & =0 \\
\mathbb{E}\left(u_{t} u_{t}^{\prime}\right) & =\Sigma_{u} \\
\mathbb{E}\left(u_{t} u_{s}^{\prime}\right) & =0 \text { for } t \neq s
\end{aligned}
$$

What is a solution to this problem?

- A solution is a policy function of the form:

$$
y_{t}=g\left(y_{t-1}, u_{t}, \sigma\right)
$$

where σ is the stochastic scale of the problem and:

$$
u_{t+1}=\sigma \varepsilon_{t+1}
$$

- The policy function must satisfy:

$$
\mathbb{E}_{t} f\left(g\left(g\left(y_{t-1}, u_{t}, \sigma\right), u_{t+1}, \sigma\right), g\left(y_{t-1}, u_{t}, \sigma\right), y_{t-1}, u_{t}\right)=0
$$

Local approximations

$$
\begin{aligned}
\hat{g}^{(1)}\left(y_{t+1}, u_{t}, \sigma\right)= & \bar{y}+g_{y} \hat{y}_{t-1}+g_{u} u_{t} \\
\hat{g}^{(2)}\left(y_{t+1}, u_{t}, \sigma\right)= & \bar{y}+\frac{1}{2} g_{\sigma \sigma}+g_{y} \hat{y}_{t-1}+g_{u} u_{t} \\
& +\frac{1}{2}\left(g_{y y}\left(\hat{y}_{t-1} \otimes \hat{y}_{t-1}\right)+g_{u u}\left(u_{t} \otimes u_{t}\right)\right) \\
& +g_{y u}\left(\hat{y}_{t-1} \otimes u_{t}\right) \\
\hat{g}^{(3)}\left(y_{t+1}, u_{t}, \sigma\right)= & \bar{y}+\frac{1}{2} g_{\sigma \sigma}+\frac{1}{6} g_{\sigma \sigma \sigma}+\frac{1}{2} g_{\sigma \sigma y} \hat{y}_{t-1}+\frac{1}{2} g_{\sigma \sigma u} u_{t} \\
& +g_{y} \hat{y}_{t-1}+g_{u} u_{t}+\ldots
\end{aligned}
$$

Breaking certainty equivalence $(1 / 2)$

The combination of future uncertainty (future shocks) and nonlinear relationships makes for precautionary motives or risk premia.

- $1^{\text {st }}$ order: certainty equivalence; today's decisions don't depend on future uncertainty
- $2^{\text {nd }}$ order:

$$
\begin{aligned}
\hat{g}^{(2)}\left(y_{t+1}, u_{t}, \sigma\right)= & \bar{y}+\frac{1}{2} g_{\sigma \sigma}+g_{y} \hat{y}_{t-1}+g_{u} u_{t} \\
& +\frac{1}{2}\left(g_{y y}\left(\hat{y}_{t-1} \otimes \hat{y}_{t-1}\right)+g_{u u}\left(u_{t} \otimes u_{t}\right)\right) \\
& +g_{y u}\left(\hat{y}_{t-1} \otimes u_{t}\right)
\end{aligned}
$$

Risk premium is a constant: $\frac{1}{2} g_{\sigma \sigma}$

Breaking certainty equivalence $(2 / 2)$

- $3^{\text {rd }}$ order:

$$
\begin{aligned}
& \hat{g}^{(3)}\left(y_{t+1}, u_{t}, \sigma\right)=\bar{y}+\frac{1}{2} g_{\sigma \sigma}+\frac{1}{6} g_{\sigma \sigma \sigma}+\frac{1}{2} g_{\sigma \sigma y} \hat{y}_{t-1}+\frac{1}{2} g_{\sigma \sigma u} u_{t} \\
& +g_{y} \hat{y}_{t-1}+g_{u} u_{t}+\ldots
\end{aligned}
$$

Risk premium is linear in the state variables:

$$
\frac{1}{2} g_{\sigma \sigma}+\frac{1}{6} g_{\sigma \sigma \sigma}+\frac{1}{2} g_{\sigma \sigma y} \hat{y}_{t-1}+\frac{1}{2} g_{\sigma \sigma u} u_{t}
$$

The cost of local approximations

(1) High order approximations are accurate around the steady state, and more so than lower order approximations
(2) But can be totally wrong far from the steady state (and may be more so than lower order approximations)
(3) Error of approximation of a solution \hat{g}, at a given point of the state space $\left(y_{t-1}, u_{t}\right)$:

$$
\begin{aligned}
& \mathcal{E}\left(y_{t-1}, u_{t}\right)= \\
& \mathbb{E}_{t} f\left(\hat{g}\left(\hat{g}\left(y_{t-1}, u_{t}, \sigma\right), u_{t+1}, \sigma\right), \hat{g}\left(y_{t-1}, u_{t}, \sigma\right), y_{t-1}, u_{t}\right)
\end{aligned}
$$

(9) Necessity for pruning

Approximation of occasionally binding constraints with penalty functions

The investment positivity constraint is translated into a penalty on the welfare:

$$
\max _{\left\{c_{t+j}, \ell_{t+j}, k_{t+j}\right\}_{j=0}^{\infty}} \sum_{j=0}^{\infty} \beta^{j} u\left(c_{t+j}, \ell_{t+j}\right)+h \cdot \log \left(i_{t+j}\right)
$$

s.t.

$$
\begin{gathered}
y_{t}=c_{t}+i_{t} \\
y_{t}=A_{t} f\left(k_{t-1}, \ell_{t}\right) \\
k_{t}=i_{t}+(1-\delta) k_{t-1} \\
A_{t}=A^{\star} e^{a_{t}} \\
a_{t}=\rho a_{t-1}+\varepsilon_{t}
\end{gathered}
$$

where the technology (f) and the preferences (u) are as before, and h governs the strength of the penalty (barrier parameter)

Thanks for your attention!

Questions?

License: Creative Commons Attribution-ShareAlike 4.0

