
Contributing to Dynare

Sébastien Villemot (CEPREMAP)

25 November 2022
1st Dynare Workshop for Advanced Users (JRC, Ispra)

Examples of contributions

● Answering questions on the forum
● Reporting a bug
● Fixing a bug
● Adding a new feature
● Improving the performance of an algorithm
● Adding a test case in the test suite
● Improving the documentation

Our community

● People
– Core developers (“Dynare Team”)
– Advisory committee
– Occasional contributors
– Users

● Communication channels
– Forum
– GitLab instance
– Mailing lists (info@dynare.org, dev@dynare.org)
– 3 annual events: summer school, JRC workshop, conference

● Code of Conduct

https://git.dynare.org/Dynare/dynare/-/blob/master/CODE_OF_CONDUCT.md

Working with GitLab

Our GitLab instance

● GitLab
– Source code hosting facility (also known as a forge)
– Built around git repositories
– Additional features: issues, merge requests, continuous integration, milestones, wiki
– Our own GitLab instance: https://git.dynare.org

● Official Dynare repository: https://git.dynare.org/Dynare/dynare
● Generic repository URL: https://git.dynare.org/namespace/project

where namespace can be a group name (e.g. Dynare) or a user name (e.g.
sebastien)

● List of all repositories of the Dynare group: https://git.dynare.org/Dynare
● Most repositories are publicly visible, but you need to create your account to

contribute

https://git.dynare.org/
https://git.dynare.org/Dynare/dynare
https://git.dynare.org/Dynare
https://git.dynare.org/users/sign_in

Exploring a repository on GitLab

● Source tree
● Commit history
● Branches (master = development branch; 5.x = current stable)
● Tags (one tag per release; also used for alpha and beta versions)
● Issues
● Merge requests (MR)
● Continuous integration (CI)

https://git.dynare.org/Dynare/dynare/-/tree/master
https://git.dynare.org/Dynare/dynare/-/commits/master
https://git.dynare.org/Dynare/dynare/-/branches
https://git.dynare.org/Dynare/dynare/-/tags
https://git.dynare.org/Dynare/dynare/-/issues
https://git.dynare.org/Dynare/dynare/-/merge_requests
https://git.dynare.org/Dynare/dynare/-/pipelines

Reporting a bug or suggesting a new feature

● Bug reports and feature suggestions are issues in GitLab
● Issues are attached to a repository decide whether to create the ⇒

new issue against the main Dynare repository or against a sub-
component (preprocessor, dseries…); if in doubt, choose the main
Dynare repository

● Verify that the issue has not already been created
– search the issues list
– if it is a bug, check the known bugs wiki page

● Click on the New issue button (on the issues list, or under the  icon in
the top bar)
– add a title and a description
– add label(s) if relevant

https://git.dynare.org/Dynare/dynare/-/issues
https://git.dynare.org/Dynare/dynare/-/wikis/Known-bugs-present-in-the-current-stable-version
https://git.dynare.org/Dynare/dynare/-/issues

Setting up local and personal repositories

● Suppose you want to contribute to the official Dynare repository
● Clone the repository locally on your computer

git clone --recurse-submodules https://git.dynare.org/Dynare/dynare.git

● Create your personal Dynare repository on GitLab
– go to the GitLab page of the official Dynare repository
– click on the Fork button on the upper right corner
– your personal GitLab repository is now at

https://git.dynare.org/username/dynare
● Link your local repository to your personal GitLab repository

git remote add personal https://git.dynare.org/username/dynare

NB: personal in the above command is just a nickname, you can use
whatever you like

https://git.dynare.org/Dynare/dynare

Git workflow

Local repository
on your computer

Official repository
on GitLab

Personal repository
on GitLab

pull
fetch Merge request

push

commit
merge
rebase

Git workflow in commands

● Downloading commits from the official repository on GitLab
– git pull --recurse-submodules origin

– Or, if you have unmerged local commits
git fetch origin
git rebase origin

– NB: origin is optional (if local repository was cloned from official one)
● Adding commit(s) locally

– edit files
– git add <files>
– git commit

● Pushing to your personal repository on GitLab
– git push personal

– NB: you may need to add the --force option if you rebased or amended commit(s)

Creating a merge request (MR)

● Suppose you pushed commits to your personal GitLab repository, that
you now want to merge into the official repository

● Open the page of your personal GitLab repository:
https://git.dynare.org/username/dynare

● Click on the  icon in the top bar, then New merge request
● Select master as the source branch, and leave the rest as it is
● Click on Compare branches and continue
● Choose a title and optionally a description and relevant label(s)
● Click on Create merge request
● Your merge request is now listed among the merge requests against the

official repository; the Dynare Team will be notified and will review it

https://git.dynare.org/Dynare/dynare/-/merge_requests

Continuous integration (CI)

● After each push, GitLab runs a pipeline (a sequence of jobs) to verify
that nothing is broken by the new commits, and to build artifacts

● Dynare pipeline:
– builds binaries and documentation
– runs the test suite (on MATLAB R2022b, optionally on R2014a and Octave)
– creates the Windows and macOS installers, and the source tarball
– uploads the installers, the source tarball and the documentation to the

Dynare website (NB: this step is skipped on personal forks)
● Artifacts (e.g. installers) and logs can be manually downloaded from

the job page (before they expire)
● No pipeline will be created if the commit message contains [skip ci]

https://git.dynare.org/Dynare/dynare/-/pipelines

The source code of Dynare

Structure of the Dynare source tree

● preprocessor: source code of the preprocessor (C++)
● matlab: core computational routines (MATLAB/Octave)
● mex: source code of MEX files (C++, Fortran)
● doc, examples: reference manual and other documentation
● tests: automated test suite
● windows, macOS: production of platform-specific installers
● contrib: third-party code
● scripts: misc utilities for developers
● configure.ac, Makefile.am, m4: build system

The Dynare preprocessor

● Standalone executable, run at an early stage by the dynare command
● Role:

– parses the .mod file (possibly with a macro-processing step)
– performs input validation and sanity checks
– performs several model transformations (auxiliary variables, Ramsey

optimality conditions…)
– computes the static version of the model (for the steady state)
– computes block decomposition
– computes symbolic model derivatives
– writes model information for consumption by MATLAB or Octave

● Written in C++ (.cc and .hh extensions)

Core computational routines

● Routines for:
– perturbation solution
– simulation: perturbation, perfect foresight, purely backward
– estimation: Bayesian, classical full information, classical partial information

(methods of moments)
– identification and sensitivity analysis
– optimal policy

● Written in MATLAB/Octave (.m extension)
● Organized in subdirectories of the matlab directory

– some (recent) subdirectories are packages in the MATLAB terminology (“+” prefix)
– others (older) are vanilla folders that need to are added to the MATLAB path
– ideally we will migrate most subdirectories to packages

MEX files

● Functions written in lower-level language that can be called directly
from MATLAB or Octave

● Used for accelerating performance-critical sections of algorithms, e.g.:
– specialized Kronecker products
– solutions to polynomial matrix equations (cycle reduction, logarithmic

reduction, discrete Lyapunov)
– k-order perturbation simulation
– law of motion of particles within particle filtering estimation
– construction of the stacked Jacobian of the perfect foresight problem

● Written in C++ or Fortran
NB: we’re currently trying to migrate most MEX files to (modern) Fortran, since researchers in
numerical methods usually find it easier than C++

Documentation

● Reference manual
– Under doc/manual/ subdirectory
– Written in reStructuredText (RST), a lightweight markup language

● Other documents in LaTeX under doc/ or preprocessor/doc/
● Example .mod files under examples/
● Wiki pages targeted at both users and developers:

https://git.dynare.org/Dynare/dynare/-/wikis/home
● Also, resources listed on the Dynare website:

https://www.dynare.org/resources/

https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://git.dynare.org/Dynare/dynare/-/wikis/home
https://www.dynare.org/resources/

Test suite

● Critical element of our quality assurance
● Includes two types of tests:

– integration tests: complete .mod files, possibly including MATLAB
commands for checking the value of the results

– unit tests: for testing specific subroutines, such as a given function or
algorithm

● Adding an integration test is easy:
– add a .mod file under the tests/ directory
– append its filename to the MODFILES variable in tests/Makefile.am

● The procedure for adding a unit test is detailed in CONTRIBUTING.md

https://git.dynare.org/Dynare/dynare/-/blob/master/CONTRIBUTING.md

Submodules

● A git submodule is a git repository used as a subdirectory of another git
repository

● Several submodules in Dynare repository:
– preprocessor
– dseries, reporting (under matlab/modules/)
– particle filtering routines (under matlab/particles/)
– unit testing framework (under matlab/utilities/tests/)
– third-party code under contrib/

● Dealing with submodules is a bit tricky, but you can mostly ignore them
(unless you want to modify one of them)

● However do not forget to pass --recurse-submodules option to git pull to
keep local submodules up-to-date

Compilation

● The preprocessor and MEX files are written in C++ and Fortran and thus
need to be compiled (their binaries have to be built from source)

● If not under Linux, a development environment needs to be installed:
– MSYS2 for Windows
– Homebrew for macOS

● Detailed instructions for building from source are in README.md
● However, if you do not plan to contribute to the preprocessor or the

MEX files, a simpler alternative is to use the binaries included in the
unstable snapshot of Dynare:
– install the latest snapshot on your computer
– copy the preprocessor and MEX binaries to your local git repository
– regularly repeat the above two steps with newer snapshots

https://www.msys2.org/
https://brew.sh/
https://git.dynare.org/Dynare/dynare/-/blob/master/README.md

Coding guidelines

● Comment your code
● Document your changes (reference manual, wiki pages)
● Add tests
● Legal information in file header

– Copyright (ideally): Dynare Team
– License: GNU General Public License, version 3 or later (GPL-3+)

● Style requirements
– Follow indentation rules
– Use spaces instead of tabulations
– Use the LF end of line (not CR+LF)
– A good editor can automate these

● See the coding guidelines and coding resources wiki pages

https://git.dynare.org/Dynare/dynare/-/wikis/CodingGuidelines
https://git.dynare.org/Dynare/dynare/-/wikis/CodingResources

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22

